Financial Derivatives Toolbox™ 5
User’s Guide

MATLAB

‘\The MathWorks™

Accelorating the poce of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Financial Derivatives Toolbox™ User’s Guide
© COPYRIGHT 2000-2010 The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2000
September 2001
April 2004
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010

First printing
Second printing
Third printing
Fourth printing
Online only
Online only
Fifth printing
Sixth printing
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 12)

Revised for Version 2.0 (Release 12.1)
Revised for Version 3.0 (Release 14)
Revised for Version 4.0 (Release 14SP3)
Revised for Version 4.0.1 (Release 2006a)
Revised for Version 4.1 (Release 2006b)
Revised for Version 5.0 (Release 2007a)
Revised for Version 5.1 (Release 2007b)
Revised for Version 5.2 (Release 2008a)
Revised for Version 5.3 (Release 2008b)
Revised for Version 5.4 (Release 2009a)
Revised for Version 5.5 (Release 2009b)
Revised for Version 5.5.1 (Release 2010a)

Getting Started

1

Product Overviewt iiiiiiininnn... 1-2
Introduction 1-2
Interest-Rate-Based Derivatives 1-2
Equity-Based Derivativesc ... 1-3

Expected Background 14

Portfolio Creation i, 1-5
Introduction 1-5
Interest-Rate-Based Derivatives 1-5
Equity Derivatives ittt 1-6
Adding Instruments to an Existing Portfolio 1-7

Portfolio Management 1-9
Instrument Constructors 1-9
Creating New Instruments or Properties 1-10
Searching or Subsetting a Portfolio 1-12

Interest-Rate Derivatives

2

Understanding Interest-Rate Derivative

Instruments 2-2
Introduction i 2-2
Bond e 2-3
Bond Optionsoiiiiiiiiiii i 2-4
Bond with Embedded Options 2-5
Fixed-Rate Note 2-5
Floating-Rate Note 2-6
G i 2-7

Floor ... 2-7

SWaPLION ..ttt e 2-9
Overview of Interest-Rate Models 2-10
Interest-Rate Modeling 2-10
Rateand Price Trees ..., 2-11
Viewing Rate or Price Movement with This Toolbox 2-12
Understanding the Interest-Rate Term Structure 2-15
Introduction 2-15
Interest Rates Versus Discount Factors 2-15
Interest-Rate Term Conversionsc.c.c.uu... 2-20

Functions That Model the Interest-Rate Term Structure .. 2-24

Computing Prices and Sensitivities Using the

Interest-Rate Term Structure 2-30
Introduction i i 2-30
Computing Instrument Prices 2-31
Computing Instrument Sensitivities 2-33
Understanding Interest-Rate Tree Models 2-35
Introduction i 2-35
Building a Tree of Forward Rates 2-36
Specifying the Volatility Model (VolSpec) 2-38

Specifying the Interest-Rate Term Structure (RateSpec) .. 2-41
Calibrating the Hull-White Model Using Market Data ... 2-42

Specifying the Time Structure (TimeSpec) 2-47
Examples of Tree Creationccovv.... 2-49
Examining Treesciiiiiinnnennnn. 2-50

Computing Prices and Sensitivities Using Interest-Rate

Tree Models i, 2-62
Introduction i 2-62
Computing Instrument Prices 2-62
Computing Instrument Sensitivities 2-71

Interest-Rate Derivatives Using Closed Form
Solutions 2-74
Pricing Caps and Floors Using the Black Option Model .. 2-74

Graphical Representationof Trees 2-75

vi Contents

Introduction i 2-75
Observing Interest Rates 2-75
Observing Instrument Prices 2-79

3

Understanding Equity Trees 3-2
Introduction i i 3-2
Building Equity Binary Trees 3-3
Building Implied Trinomial Trees 3-8
Examining Equity Trees, 3-16
Differences Between CRR and EQP Tree Structures 3-20

Understanding Equity Exotic Options 3-22
Introduction i i 3-22
Asian Option it e 3-22
Barrier Option i, 3-23
Basket Option i, 3-25
Compound Optiontiiiiiiinnnnnennnnnn 3-26
Lookback Optiono nnnn. 3-27
Digital Option ..., 3-28
Rainbow Option, 3-29
Vanilla Optionttt 3-30

Computing Prices and Sensitivities for Equity

Derivatives Using Trees 3-32
Computing Instrument Prices 3-32
Computing Prices UsingCRR 3-34
Computing Prices Using EQP 3-36
Computing Prices Using ITT 3-38
Examining Output from the Pricing Functions 3-40
Computing Instrument Sensitivities 3-44

Graphical Representation of CRR, EQP, and ITT Trees .. 3-48

Equity Derivatives Using Closed-Form Solutions 3-50
Introduction i 3-50
Computing Prices and Sensitivities Using the Black-Scholes

Model ... 3-54

vii

viii

Computing Prices and Sensitivities Using the Black

Model e 3-56
Computing Prices and Sensitivities Using the

Roll-Geske-Whaley Model 3-57
Computing Prices and Sensitivities Using the

Bjerksund-Stensland Model 3-58

4 |

Hedging it 4-2
Hedging Functions, 4-3
Introduction i i 4-3
Hedging with hedgeopt, 4-4
Self-Financing Hedges with hedgeslf 4-12
Specifying Constraints with ConSet 4-16
Introduction i 4-16
Setting Constraintsc.iiiiiinneneeennnn. 4-16
Portfolio Rebalancing 4-19
Hedging with Constrained Portfolios 4-21
L0 =) T 1= 4-21
Example: Fully Hedged Portfolio 4-21
Example: Minimize Portfolio Sensitivities 4-24
Example: Under-Determined System 4-25
Example: Portfolio Constraints with hedgeslf 4-27

Function Reference

5

Portfolio Hedge Allocation 5-3

Interest-Rate Term Structure 5-3

Contents

Heath-Jarrow-Morton Trees 5-3

Black-Derman-Toy Trees 5-4
Black-Karasinski Trees 5-4
Cox-Ross-Rubinstein Trees 5-5
Equal Probabilities Binomial Trees 5-5
Hull-White Trees 5-6
Implied Trinomial Tree 5-6
Heath-Jarrow-Morton Utilities 5-7
Black-Derman-Toy Utilities 5-7
Black-Karasinski Utilities 5-8
Cox-Ross-Rubinstein Utilities 5-9
Equal Probabilities Tree Utilities 5-10
Implied Trinomial Tree Utilities 5-10
Hull-White Utilities 5-11
Tree Manipulation 5-11
Derivatives Pricing Options 5-12

Pricing and Sensitivity Using Black-Scholes Option
Pricing Model i 5-12

ix

X

Contents

Pricing and Sensitivity Using Black Option Pricing
Model e

Pricing and Sensitivity Using Longstaff-Schwartz
Option Pricing Model

Pricing and Sensitivity Using Nengjiu Ju
Approximation Model

Pricing and Sensitivity Using Role-Geske-Whaley
Option Pricing Model

Pricing and Sensitivity Using Bjerksund-Stensland
Option Pricing Model

Pricing and Sensitivity Using Stulz Option Pricing
Model e e

Instrument Portfolio Handling

Financial Object Structures

Interest Term Structure

Functions — Alphabetical List

6

Derivatives Pricing Options

A

Bl

Pricing Options Structure A-2
Introduction i i A-2
Default Structure i, A-2

Customizing the Structure A-5

Bibliography

Black-Derman-Toy (BDT) Modeling B-2

Heath-Jarrow-Morton (HJM) Modeling B-3

Hull-White (HW) and Black-Karasinski (BK)

Modeling it B4
Cox-Ross-Rubinstein (CRR) Modeling B-5
Implied Trinomial Tree (ITT) Modeling B-6
Equal Probabilities Tree (EQP) Modeling B-7
Closed-Form Solutions Modeling B-8
Financial Derivatives B-9

xi

xii

Contents

Examples

Cl

Instrument Portfolio Examples

Interest Rate Environment Examples

HJM Examples

Volatility Modeling

BDT Examples

Rate Specification Creation

Time Specification

Sensitivity

Treeviewer Examples

Creating Equity Derivatives

Pricing Equity Derivatives

Closed-Form Solution Examples

Hedging Examples

Hedging with Constrained Portfolios

C-2

C-2

C-2

C-3

C-3

C-3

C-3

C4

C4

C4

Glossary

Index

xiii

xiv Contents

Getting Started

® “Product Overview” on page 1-2
e “Expected Background” on page 1-4
® “Portfolio Creation” on page 1-5

e “Portfolio Management” on page 1-9

1 Getting Started

Product Overview

1-2

In this section...

“Introduction” on page 1-2
“Interest-Rate-Based Derivatives” on page 1-2

“Equity-Based Derivatives” on page 1-3

Introduction

Financial Derivatives Toolbox™ software provides components for analyzing
individual derivative instruments and portfolios containing several types of
interest-rate-based and equity-based financial instruments.

Interest-Rate-Based Derivatives
The toolbox provides functionality that supports the creation and management

of these interest-rate-based instruments:

¢ Bonds

* Bond options (puts and calls)

e Caps

¢ Fixed-rate notes

* Floating-rate notes

* Floors

* Swaps

® Swaption

e (Callable and Puttable bonds

Additionally, the toolbox provides functions to create arbitrary cash flow
instruments. The toolbox provides pricing and sensitivity routines for these
instruments. See “Computing Prices and Sensitivities Using the Interest-Rate

Term Structure” on page 2-30 or “Computing Prices and Sensitivities Using
Interest-Rate Tree Models” on page 2-62 for information.

Product Overview

Equity-Based Derivatives
The toolbox also provides functions to create and manage various equity-based

derivatives, including the following:
® Asian options
® Barrier options

e Compound options

Lookback options

Vanilla stock options (put and call options)
The toolbox also provides pricing and sensitivity routines for these

instruments. (See “Computing Prices and Sensitivities for Equity Derivatives
Using Trees” on page 3-32.)

1-3

1 Getting Started

Expected Background

1-4

In general, this guide assumes experience working with financial derivatives
and some familiarity with the underlying models.

In designing Financial Derivatives Toolbox documentation, we assume your
title is similar to one of these:

Analyst, quantitative analyst
Risk manager

Portfolio manager

Fund manager, asset manager
Financial engineer

Trader

Student, professor, or other academic

We also assume your background, education, training, and responsibilities
match some aspects of this profile:

Finance, economics, perhaps accounting

Engineering, mathematics, physics, other quantitative sciences
Bachelor’s degree minimum; MS or MBA likely; Ph.D. perhaps; CFA
Comfortable with probability theory, statistics, and algebra

Understand linear or matrix algebra, calculus, and differential equations
Previously done traditional programming (C, Fortran, etc.)

Responsible for instruments or analyses involving large sums of money

Perhaps new to MATLAB

Portfolio Creation

Portfolio Creation

In this section...

“Introduction” on page 1-5
“Interest-Rate-Based Derivatives” on page 1-5
“Equity Derivatives” on page 1-6

“Adding Instruments to an Existing Portfolio” on page 1-7

Introduction

The instadd function creates a set of instruments (portfolio) or adds
instruments to an existing instrument collection. The TypeString argument
specifies the type of the investment instrument. For interest-rate-based
derivatives, the types are: Bond, OptBond, CashFlow, Fixed, Float, Cap,
Floor, and Swap. For equity derivatives, the types are Asian, Barrier,
Compound, Lookback, and OptStock.

The input arguments following TypeString are specific to the type of
investment instrument. Thus, the TypeString argument determines how the
remainder of the input arguments is interpreted. For example, instadd with
the type string Bond creates a portfolio of bond instruments.

InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Interest-Rate-Based Derivatives

In addition to the bond instrument already described, the toolbox can create
portfolios containing the following set of interest-rate-based derivatives:

* Bond option

InstSet = instadd('OptBond', BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt)

e Arbitrary cash flow instrument

InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle, Basis)

1-5

1 Getting Started

¢ Fixed-rate note instrument

InstSet = instadd('Fixed', CouponRate, Settle, Maturity, FixedReset, Basis, Principal)
* Floating-rate note instrument

InstSet = instadd('Float', Spread, Settle, Maturity, FloatReset, Basis, Principal)
¢ Cap instrument

InstSet = instadd('Cap', Strike, Settle, Maturity, CapReset, Basis, Principal)
¢ Floor instrument

InstSet = instadd('Floor', Strike, Settle, Maturity, FloorReset, Basis, Principal)
®* Swap instrument

InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)
® Swaption instrument

InstSet = instadd('Swaption', OptSpec, Strike, ExerciseDates, Spread,
Settle, Maturity, AmericanOpt, SwapReset, Basis, Principal)

* Bond with embedded option instrument

InstSet = instadd('OptEmBond', CouponRate, Settle, Maturity, OptSpec, Strike,
ExerciseDates, 'AmericanOpt', AmericanOpt, 'Period', Period, 'Basis', Basis,
'EndMonthRule', EndMonthRule, 'Face',Face,'IssueDate', IssueDate, 'FirstCouponDate',

FirstCouponDate, 'LastCouponDate', LastCouponDate,'StartDate', StartDate)

Equity Derivatives

The toolbox can create portfolios containing the following set of equity
derivatives:

e Asian instrument

InstSet = instadd('Asian', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt,
AvgType, AvgPrice, AvgDate)

e Barrier instrument

1-6

Portfolio Creation

InstSet = instadd('Barrier', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, ...

BarrierType, Barrier, Rebate)

® Compound instrument

InstSet = instadd('Compound', UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, ...
COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)

® Lookback instrument
InstSet = instadd('Lookback', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

® Stock option instrument

InstSet = instadd('OptStock', OptSpec, Strike, Settle, Maturity, AmericanOpt)

Adding Instruments to an Existing Portfolio

To use the instadd function to add additional instruments to an existing
instrument portfolio, provide the name of an existing portfolio as the first
argument to the instadd function.

Consider, for example, a portfolio containing two cap instruments only:

Strike [0.06; 0.07];
Settle '08-Feb-2000";
Maturity = '15-Jdan-2003';

Port_1 = instadd('Cap', Strike, Settle, Maturity);

These commands create a portfolio containing two cap instruments with the
same settlement and maturity dates, but with different strikes. In general,
the input arguments describing an instrument can be either a scalar, or

a number of instruments (NumInst)-by-1 vector in which each element
corresponds to an instrument. Using a scalar assigns the same value to all
instruments passed in the call to instadd.

Use the instdisp command to display the contents of the instrument set:
instdisp(Port_1)

Index Type Strike Settle Maturity CapReset Basis Principal

Getting Started

1-8

1 Cap 0.06 08-Feb-2000 15-Jan-2003 1 0 100
2 Cap 0.07 08-Feb-2000 15-Jan-2003 1 0 100

Now add a single bond instrument to Port_1. The bond has a 4.0% coupon

and the same settlement and maturity dates as the cap instruments.

CouponRate = 0.04;
Port_1 = instadd(Port_1, 'Bond', CouponRate, Settle, Maturity);

Use instdisp again to see the resulting instrument set:

instdisp(Port_1)

Index Type Strike Settle Maturity CapReset Basis Principal

1 Cap 0.06 08-Feb-2000 15-Jan-2003 1 0 100

2 Cap 0.07 08-Feb-2000 15-Jan-2003 1 0 100

Index Type CouponRate Settle Maturity Period Basis EndMonthRule IssueDate ..
3 Bond 0.04 08-Feb-2000 15-Jan-2003 2 0 1 NaN

Face

. 100

Portfolio Management

Porifolio Management

In this section...

“Instrument Constructors” on page 1-9
“Creating New Instruments or Properties” on page 1-10

“Searching or Subsetting a Portfolio” on page 1-12

Instrument Constructors

The toolbox provides constructors for the most common financial instruments.
A constructor is a function that builds a structure dedicated to a certain type
of object; in this toolbox, an object is a type of market instrument.

The instruments and their constructors in this toolbox are listed below.

Instrument Constructor
Asian option instasian
Barrier option instbarrier
Bond instbond
Bond option instopthbnd
Arbitrary cash flow instcf
Compound option instcompound
Fixed-rate note instfixed
Floating-rate note instfloat
Cap instcap

Floor instfloor
Lookback option instlookback
Stock option instoptstock
Swap instswap
Swaption instswaption

1-9

1 Getting Started

1-10

Each instrument has parameters (fields) that describe the instrument. The
toolbox functions let you do the following:

® (Create an instrument or portfolio of instruments.
® Enumerate stored instrument types and information fields.
® Enumerate instrument field data.

e Search and select instruments.

The instrument structure consists of various fields according to instrument
type. A field is an element of data associated with the instrument. For
example, a bond instrument contains the fields CouponRate, Settle,
Maturity, and so on. Additionally, each instrument has a field that identifies
the investment type (bond, cap, floor, and so on).

In reality, the set of parameters for each instrument is not fixed. You have
the ability to add additional parameters. These additional fields are ignored
by the toolbox functions. They may be used to attach additional information
to each instrument, such as an internal code describing the bond.

Parameters not specified when creating an instrument default to NaN, which,
in general, means that the functions using the instrument set (such as
intenvprice or hjmprice) will use default values. At the time of pricing,
an error occurs if any of the required fields is missing, such as Strike in a
cap or CouponRate in a bond.

Creating New Instruments or Properties

Use the instaddfield function to create a kind of instrument or to add new
properties to the instruments in an existing instrument collection.

To create a kind of instrument with instaddfield, you must specify three
arguments:

® Type

® FieldName

® Data

Portfolio Management

Type defines the type of the new instrument, for example, Future. FieldName
names the fields uniquely associated with the new type of instrument. Data
contains the data for the fields of the new instrument.

An optional fourth argument is ClassList. ClassList specifies the data
types of the contents of each unique field for the new instrument.

Use either syntax to create a kind of instrument using instaddfield:

InstSet = instaddfield('FieldName', FieldlList, 'Data', DatalList,...
'Type', TypeString)

InstSet = instaddfield('FieldName', FieldlList, 'FieldClass',...
ClassList, 'Data' , DatalList, 'Type', TypeString)

To add new instruments to an existing set, use:

InstSetNew = instaddfield(InstSetOld, 'FieldName', FieldlList,...
'Data', DatalList, 'Type', TypeString)

As an example, consider a futures contract with a delivery date of July 15,
2000, and a quoted price of $104.40. Since Financial Derivatives Toolbox
software does not directly support this instrument, you must create it using
the function instaddfield. Use these parameters to create instruments:

® Type: Future

® Field names: Delivery and Price

e Data: Delivery is July 15, 2000, and price is $104.40.

Enter the data into MATLAB® software:
Type = 'Future';

FieldName = {'Delivery', 'Price'};
Data = {'Jul-15-2000', 104.4};

Finally, create the portfolio with a single instrument:

Port = instaddfield('Type', Type, 'FieldName', FieldName,...
'Data', Data);

1-11

1 Getting Started

1-12

Now use the function instdisp to examine the resulting single-instrument
portfolio:

instdisp(Port)
Index Type Delivery Price
1 Future Jul-15-2000 104.4

Because your portfolio Port has the same structure as those created using
the function instadd, you can combine portfolios created using instadd with
portfolios created using instaddfield. For example, you can now add two
cap instruments to Port with instadd.

Strike = [0.06; 0.07];

Settle = '08-Feb-2000';

Maturity = '15-Jan-2003"';

Port = instadd(Port, 'Cap', Strike, Settle, Maturity);

View the resulting portfolio using instdisp.

instdisp(Port)

Index Type Delivery Price

1 Future 15-Jul-2000 104.4

Index Type Strike Settle Maturity CapReset Basis Principal
2 Cap 0.06 08-Feb-2000 15-Jan-2003 1 0 100

3 Cap 0.07 08-Feb-2000 15-Jan-2003 1 0 100

Searching or Subsetting a Portfolio
Financial Derivatives Toolbox software provides functions that enable you to:

¢ Find specific instruments within a portfolio.

® (Create a subset portfolio consisting of instruments selected from a larger
portfolio.

The instfind function finds instruments with a specific parameter value;
it returns an instrument index (position) in a large instrument set. The
instselect function, on the other hand, subsets a large instrument set into

Portfolio Management

a portfolio of instruments with designated parameter values; it returns an
instrument set (portfolio) rather than an index.

instfind
The general syntax for instfind is

IndexMatch = instfind(InstSet, 'FieldName', FieldlList, 'Data’,...
DatalList, 'Index', IndexSet, 'Type', TypelList)

InstSet is the instrument set to search. Within InstSet instruments
categorized by type, each type can have different data fields. The stored data
field is a row vector or string for each instrument.

The FieldList, DatalList, and TypelList arguments indicate values to
search for in the FieldName, Data, and Type data fields of the instrument
set. FieldList is a cell array of field name(s) specific to the instruments.
DataList is a cell array or matrix of acceptable values for the parameter(s)
specified in FieldList. FieldName and Data (consequently, FieldList and
DatalList) parameters must appear together or not at all.

IndexSet is a vector of integer index(es) designating positions of instruments
in the instrument set to check for matches; the default is all indices available
in the instrument set. TypeList is a string or cell array of strings restricting

instruments to match one of the TypeList types; the default is all types in the
instrument set.

IndexMatch is a vector of positions of instruments matching the input
criteria. Instruments are returned in IndexMatch if all the FieldName, Data,
Index, and Type conditions are met. An instrument meets an individual
field condition if the stored FieldName data matches any of the rows listed
in the DatalList for that FieldName.

instfind Examples. The examples use the provided MAT-file deriv.mat.

The MAT-file contains an instrument set, HUMInstSet, that contains eight
instruments of seven types.

1-13

1 Getting Started

load deriv.mat

instdisp(HJMInstSet)

Index Type CouponRate Settle Maturity Period Basis ... Name Quantity

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN ... 4% bond 100

2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN ... 4% bond 50

Index Type UnderInd OptSpec Strike ExerciseDates AmericanOpt Name Quantity

3 OptBond 2 call 101 01-Jan-2003 NaN Option 101 -50

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
4 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity

5 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity

6 Cap 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Cap 30

Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity

7 Floor 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Floor 40

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] %/20BP Swap 10

Find all instruments with a maturity date of January 01, 2003.

Mat2003 = ...
instfind (HJMInstSet, 'FieldName', '‘Maturity', 'Data‘', '01-Jan-2003")

Mat2003 =

oo o~ =

Find all cap and floor instruments with a maturity date of January 01, 2004.

1-14

Portfolio Management

CapFloor = instfind(HJMInstSet,...
'FieldName', 'Maturity', 'Data', '01-Jdan-2004"', 'Type',...
{'Cap';'Floor'})

CapFloor =

6
7

Find all instruments where the portfolio is long or short a quantity of 50.

Pos50 = instfind(HJMInstSet, 'FieldName',...
"Quantity', 'Data',{'50';"'-50"'})

Pos50 =

2
3

instselect

The syntax for instselect is the same syntax as for instfind. instselect
returns a full portfolio instead of indexes into the original portfolio. Compare
the values returned by both functions by calling them equivalently.

Previously you used instfind to find all instruments in HIMInstSet with a
maturity date of January 01, 2003.

Mat2003 =
instfind (HJMInstSet, 'FieldName', 'Maturity', 'Data','01-Jan-2003")

Mat2003 =

© o~ =

Now use the same instrument set as a starting point, but execute the
instselect function instead, to produce a new instrument set matching
the identical search criteria.

1-15

1 Getting Started

Select2003 =
instselect(HJMInstSet, 'FieldName', 'Maturity', 'Data’',...
'01-Jan-2003")

instdisp(Select2003)

Index Type CouponRate Settle Maturity Period Basis Name Quantity

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN 4% bond 100
Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
2 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80
Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity
3 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8
Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
4 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 6%/20BP Swap 10

instselect Examples. These examples use the portfolio ExampleInst
provided with the MAT-file InstSetExamples.mat.

load InstSetExamples.mat
instdisp(ExamplelInst)

Index Type Strike Price Opt Contracts

1 Option 95 12.2 Call 0

2 Option 100 9.2 Call 0

3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts

5 Option 105 7.4 Put -1000

6 Option 95 2.9 Put 0

Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

1-16

Portfolio Management

The instrument set contains 3 instrument types: Option, Futures, and TBill.
Use instselect to make a new instrument set containing only options struck
at 95. In other words, select all instruments containing the field Strike and
with the data value for that field equal to 95.

InstSet = instselect(ExamplelInst,'FieldName','Strike', 'Data',95);
instdisp(InstSet)

Index Type Strike Price Opt Contracts

1 Option 95 12.2 Call 0

2 Option 95 2.9 Put 0

You can use all the various forms of instselect and instfind to locate
specific instruments within this instrument set.

1-17

1 Getting Started

1-18

Interest-Rate Derivatives

¢ “Understanding Interest-Rate Derivative Instruments” on page 2-2
e “Overview of Interest-Rate Models” on page 2-10
¢ “Understanding the Interest-Rate Term Structure” on page 2-15

® “Computing Prices and Sensitivities Using the Interest-Rate Term
Structure” on page 2-30

¢ “Understanding Interest-Rate Tree Models” on page 2-35

¢ “Computing Prices and Sensitivities Using Interest-Rate Tree Models”
on page 2-62

¢ “Interest-Rate Derivatives Using Closed Form Solutions” on page 2-74

e “Graphical Representation of Trees” on page 2-75

2 Interest-Rate Derivatives

Understanding Interest-Rate Derivative Instruments

In this section...

“Introduction” on page 2-2

“Bond” on page 2-3

“Bond Options” on page 2-4

“Bond with Embedded Options” on page 2-5
“Fixed-Rate Note” on page 2-5
“Floating-Rate Note” on page 2-6

“Cap” on page 2-7

“Floor” on page 2-7

“Swap” on page 2-8

“Swaption” on page 2-9

Introduction

Financial Derivatives Toolbox software extends the Financial Toolbox™
capabilities in the areas of fixed-income derivatives and securities contingent
on interest rates. The toolbox provides components for analyzing individual
financial derivative instruments and portfolios. Specifically, it provides
functions for calculating prices and sensitivities, for hedging, and for
visualizing results.

The toolbox provides a set of functions that perform computations on portfolios
containing the following interest-rate based financial instruments:

* Bond

¢ Bond options

¢ Bond with embedded options
* Fixed-rate note

® Floating-rate note

* Cap

Understanding Interest-Rate Derivative Instruments

* Floor
® Swap

® Swaption

Additionally, Financial Derivatives Toolbox software lets you create and
price arbitrary cash flow instruments based on zero-coupon bonds or on any
supported interest-rate model. For more information, see “Interest-Rate
Modeling” on page 2-10.

Bond

A bond is a long-term debt security with a preset interest-rate and maturity.
At maturity you must pay the principal and interest.

The price or value of a bond is determined by discounting the expected cash
flows of the bond to the present, using the appropriate discount rate. The
following equation represents the relationship of the expected cash flows
and discount rate:

where:

B, is the bond value.

C is the annual coupon payment.

F is the face value of the bond.

r is the required return on the bond.

t 1s the number of years remaining until maturity.

Financial Derivatives Toolbox supports the following for pricing and
specifying a bond.

2-3

2 Interest-Rate Derivatives

2-4

Function Purpose

bondbybdt Price a bond using a BDT interest-rate tree.
bondbyhw Price a bond using an HW interest-rate tree.
bondbybk Price a bond using a BK interest-rate tree.
bondbyhjm Price a bond using an HJM interest-rate tree.
bondbyzero Price a bond using a set of zero curves.
instbond Construct a bond instrument.

Bond Options

Financial Derivatives Toolbox software supports three types of put and call
options on bonds:

® American option: An option that you exercise any time until its expiration
date.
¢ European option: An option that you exercise only on its expiration date.

¢ Bermuda option: A Bermuda option resembles a hybrid of American and
European options. You can exercise it on predetermined dates only, usually
monthly.

Financial Derivatives Toolbox supports the following for pricing and
specifying a bond option.

Function Purpose

optbndbybdt Price a bond option price using a BDT
interest-rate tree.

optbndbyhw Price a bond option price using an HW
interest-rate tree.

optbndbybk Price a bond option price using a BK
interest-rate tree.

optbndbyhjm Price a bond option price using an HJM
interest-rate tree.

instoptbnd Construct a bond option instrument.

Understanding Interest-Rate Derivative Instruments

Bond with Embedded Options

A bond with embedded options allows the issuer to buy back or redeem the
bond at a predetermined price at specified future dates. Financial Derivatives
Toolbox software supports American, European, and Bermuda callable and
puttable bonds.

The pricing for a bond with embedded options is as follows:
¢ For a callable bond: PriceCallableBond = BondPrice - BondCallOption
¢ For a puttable bond: PricePuttableBond = PriceBond + PricePutOption

Financial Derivatives Toolbox supports the following for pricing and
specifying a bond with embedded options.

Function Purpose

optembndbybdt Price a bond with embedded options using a
BDT interest-rate tree.

optembndbyhw Price a bond with embedded options using an
HW interest rate tree.

optembndbybk Price a bond with embedded options using a
BK interest-rate tree.

optembndbyhjm Price a bond with embedded options using an
HJM interest-rate tree.

instoptembnd Construct a bond-with-embedded-options
instrument.

Fixed-Rate Note

A fixed-rate note is a long-term debt security with a preset interest rate
and. At maturity the interest must be paid. The principal may or may not
be paid at maturity. In Financial Derivatives Toolbox software, the principal
is always paid at maturity.

Financial Derivatives Toolbox supports the following for pricing and
specifying a fixed-rate note.

2 Interest-Rate Derivatives

2-6

Function Purpose

fixedbybdt Price a fixed-rate note using a BDT
interest-rate tree.

fixedbyhw Price a fixed-rate note using an HW
interest-rate tree.

fixedbybk Price a fixed-rate note using a BK interest-rate
tree.

fixedbyhjm Price a fixed-rate note using an HJM
interest-rate tree.

fixedbyzero Price a fixed-rate note using a set of zero
curves.

instfixed Construct a fixed-rate instrument.

Floating-Rate Note

A floating-rate note is a security like a bond, but the interest rate of the note
is reset periodically, relative to a reference index rate, to reflect fluctuations

in market interest rates.

Financial Derivatives Toolbox supports the following for pricing and
specifying a floating-rate note.

Function Purpose

floatbybdt Price a floating-rate note using a BDT
interest-rate tree.

floatbyhw Price a floating-rate note using an HW
interest-rate tree.

floatbybk Price a floating-rate note using a BK
interest-rate tree.

floatbyhjm Price a floating-rate note using an HJM
interest-rate tree.

floatbyzero Price a floating-rate note using a set of zero
curves.

instfloat Construct a floating-rate note instrument.

Understanding Interest-Rate Derivative Instruments

Cap
A cap is a contract that includes a guarantee that sets the maximum interest

rate to be paid by the holder, based on an otherwise floating interest rate.
The payoff for a cap is:

max(CurrentRate — CapRate,0)

Financial Derivatives Toolbox supports the following for pricing and
specifying a cap instrument.

Function Purpose

capbybdt Price a cap instrument using a BDT
interest-rate tree.

capbyhw Price a cap instrument using an HW
interest-rate tree.

capbybk Price a cap instrument using a BK interest-rate
tree.

capbyhjm Price a cap instrument using an HJM
interest-rate tree.

capbyblk Price a cap instrument using the Black option
pricing model.

instcap Construct a cap instrument.

Floor

A floor is a contract that includes a guarantee setting the minimum interest
rate to be received by the holder, based on an otherwise floating interest
rate. The payoff for a floor is:

max(FloorRate — CurrentRate,0)

Financial Derivatives Toolbox supports the following for pricing and
specifying a floor instrument.

2-7

2 Interest-Rate Derivatives

2-8

Function Purpose

floorbybdt Price a floor instrument using a BDT
interest-rate tree.

floorbyhw Price a floor instrument using an HW
interest-rate tree.

floorbybk Price a floor instrument using a BK
interest-rate tree.

floorbyhjm Price a floor instrument using an HJM
interest-rate tree.

instfloor Construct a floor instrument.

Swap

A swap is contract between two parties obligating the parties to exchange

future cash flows. This toolbox version handles only the vanilla swap, which

is composed of a floating-rate leg and a fixed-rate leg.

Financial Derivatives Toolbox supports the following for pricing and
specifying a swap instrument.

Function Purpose

swapbybdt Price a swap instrument using a BDT
interest-rate tree.

swapbyhw Price a swap instrument using an HW
interest-rate tree.

swapbybk Price a swap instrument using a BK
interest-rate tree.

swapbyhjm Price a swap instrument using an HJM
interest-rate tree.

swapbyzero Price a swap instrument using a set of zero
curves.

instswap Construct a swap instrument.

Understanding Interest-Rate Derivative Instruments

Swaption

A swaption is an option to enter into an interest-rate swap contract. A call
swaption allows the option buyer to enter into an interest-rate swap where the
buyer of the option pays the fixed-rate and receives the floating-rate. A put
swaption allows the option buyer to enter into an interest-rate swap where
the buyer of the option receives the fixed-rate and pays the floating-rate.

Financial Derivatives Toolbox supports the following for pricing and
specifying a swaption instrument.

Function Purpose

swaptionbybdt Price a swaption instrument using a BDT
interest-rate tree.

swaptionbyhw Price a swaption instrument using an HW
interest-rate tree.

swaptionbybk Price a swaption instrument using a BK
interest-rate tree.

swaptionbyhjm Price a swaption instrument using an HJM
interest-rate tree.

instswaption Construct a swaption instrument.

2-9

2 Interest-Rate Derivatives

Overview of Interest-Rate Models

2-10

In this section...

“Interest-Rate Modeling” on page 2-10
“Rate and Price Trees” on page 2-11

“Viewing Rate or Price Movement with This Toolbox” on page 2-12

Interest-Rate Modeling

Financial Derivatives Toolbox software computes prices and sensitivities of
interest-rate contingent claims based on several methods of modeling changes
In interest rates over time:

The interest-rate term structure

This model uses sets of zero-coupon bonds to predict changes in interest
rates.

Heath-Jarrow-Morton (HJM) model

The HJM model considers a given initial term structure of interest
rates and a specification of the volatility of forward rates to build a tree
representing the evolution of the interest rates, based on a statistical
process.

Black-Derman-Toy (BDT) model

In the BDT model, all security prices and rates depend on the short rate
(annualized 1-period interest rate). The model uses long rates and their
volatilities to construct a tree of possible future short rates. The resulting
tree can then be used to determine the value of interest-rate sensitive
securities from this tree.

Hull-White (HW) model

The Hull-White model incorporates the initial term structure of interest
rates and the volatility term structure to build a trinomial recombining tree
of short rates. The resulting tree is used to value interest-rate dependent
securities. The implementation of the HW model in Financial Derivatives
Toolbox software is limited to one factor.

Black-Karasinski (BK) model

Overview of Interest-Rate Models

The BK model is a single-factor, log-normal version of the HW model.
For detailed information about interest-rate models, see:

¢ “Computing Prices and Sensitivities Using the Interest-Rate Term
Structure” on page 2-30 for a discussion of price and sensitivity based on
portfolios of zero-coupon bonds

® “Computing Prices and Sensitivities Using Interest-Rate Tree Models” on
page 2-62 for a discussion of price and sensitivity based on the HJM and
BDT interest-rate models

Note Historically, the initial version of Financial Derivatives Toolbox
software provided only the HJM interest-rate model. A later version added
the BDT model. The current version adds both the HW and BK models.
This chapter provides extensive examples of using the HJM and BDT
models to compute prices and sensitivities of interest-rate based financial
derivatives.

The HW and BK tree structures are similar to the BDT tree structure.
To avoid needless repetition throughout this chapter, documentation is
provided only where significant deviations from the BDT structure exist.
Specifically, “HW and BK Tree Structures” on page 2-57 explains the few
noteworthy differences among the various formats.

If you need more detailed information about functions that use the HW and
BK tree structures, see Chapter 5, “Function Reference”, which provides
extensive reference information for all functions that compose this toolbox.

Rate and Price Trees

The interest-rate or price trees supported in this toolbox can be either
binomial (two branches per node) or trinomial (3 branches per node).
Typically, binomial trees assume that underlying interest rates or prices can
only either increase or decrease at each node. Trinomial trees allow for a more
complex movement of rates or prices. With trinomial trees the movement

of rates or prices at each node is unrestricted (for example, up-up-up or
unchanged-down-down).

2-11

2 Interest-Rate Derivatives

2-12

Types of Trees

Financial Derivatives Toolbox trees can be classified as bushy or recombining.
A bushy tree is a tree in which the number of branches increases exponentially
relative to observation times; branches never recombine. In this context,

a recombining tree is the opposite of a bushy tree. A recombining tree has
branches that recombine over time. From any given node, the node reached
by taking the path up-down is the same node reached by taking the path
down-up. A bushy tree and a recombining binomial tree are illustrated next.

Bushy Tree

Recombining Binomial Tree

In this toolbox the Heath-Jarrow-Morton model works with bushy trees.
The Black-Derman-Toy model, on the other hand, works with recombining
binomial trees.

The other two interest rate models supported in this toolbox, Hull-White and
Black-Karasinski, work with recombining trinomial trees.

Viewing Rate or Price Movement with This Toolbox

This toolbox provides the data file deriv.mat that contains four interest-rate
based trees:

® HJMTree — A bushy binomial tree

® BDTTree — A recombining binomial tree

Overview of Interest-Rate Models

® HWTree and BKTree — Recombining trinomial trees

The toolbox also provides the treeviewer function, which graphically displays
the shape and data of price, interest rate, and cash flow trees. Viewed with
treeviewer, the bushy shape of an HJM tree and the recombining shape

of a BDT tree are apparent.

HJMTree (bushy) BDTTree (recombining)

With treeviewer, you can also see the recombining shape of HW and BK
trinomial trees.

2-13

2 Interest-Rate Derivatives

HWTree and BKTree (recombining)

2-14

Understanding the Interest-Rate Term Structure

Understanding the Interest-Rate Term Structure

In this section...

“Introduction” on page 2-15
“Interest Rates Versus Discount Factors” on page 2-15

“Interest-Rate Term Conversions” on page 2-20

“Functions That Model the Interest-Rate Term Structure” on page 2-24

Introduction

The interest-rate term structure represents the evolution of interest rates
through time. In MATLAB software, the interest-rate environment is
encapsulated in a structure called RateSpec (rate specification). This
structure holds all information required to completely identify the evolution
of interest rates. Several functions included in Financial Derivatives Toolbox
software are dedicated to the creating and managing of the RateSpec
structure. Many others take this structure as an input argument representing
the evolution of interest rates.

Before looking further at the RateSpec structure, examine three functions
that provide key functionality for working with interest rates: disc2rate, its
opposite, rate2disc, and ratetimes. The first two functions map between
discount factors and interest rates. The third function, ratetimes, calculates
the effect of term changes on the interest rates.

Interest Rates Versus Discount Factors

Discount factors are coefficients commonly used to find the current value

of future cash flows. As such, there is a direct mapping between the rate
applicable to a period of time, and the corresponding discount factor. The
function disc2rate converts discount factors for a given term (period) into
interest rates. The function rate2disc does the opposite; it converts interest
rates applicable to a given term (period) into the corresponding discount
factors.

Calculating Discount Factors from Rates
As an example, consider these annualized zero-coupon bond rates.

2-15

2 Interest-Rate Derivatives

From To Rate
15 Feb 2000 15 Aug 2000 0.05
15 Feb 2000 15 Feb 2001 0.056
15 Feb 2000 15 Aug 2001 0.06
15 Feb 2000 15 Feb 2002 0.065
15 Feb 2000 15 Aug 2002 0.075

To calculate the discount factors corresponding to these interest rates, call
rate2disc using the syntax

Disc = rate2disc(Compounding, Rates, EndDates, StartDates,
ValuationDate)

where:

e Compounding represents the frequency at which the zero rates are
compounded when annualized. For this example, assume this value to be 2.

® Rates is a vector of annualized percentage rates representing the interest
rate applicable to each time interval.

e EndDates is a vector of dates representing the end of each interest-rate
term (period).

e StartDates is a vector of dates representing the beginning of each
interest-rate term.

e ValuationDate is the date of observation for which the discount factors
are calculated. In this particular example, use February 15, 2000 as the
beginning date for all interest-rate terms.

Next, set the variables in MATLAB.

StartDates = ['15-Feb-2000'];
EndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;

ValuationDate ['15-Feb-2000'];

2-16

Understanding the Interest-Rate Term Structure

Rates = [0.05; 0.056; 0.06; 0.065; 0.075];

Finally, compute the discount factors.

Disc = rate2disc(Compounding, Rates,

ValuationDate)
Disc =

0.9756
0.9463
0.9151
0.8799
0.8319

By adding a fourth column to the rates table (see “Calculating Discount
Factors from Rates” on page 2-15) to include the corresponding discounts, you

can see the evolution of the discount factors.

From

15 Feb 2000
15 Feb 2000
15 Feb 2000
15 Feb 2000
15 Feb 2000

Optional Time Factor Outputs

The function rate2disc optionally returns two additional output arguments:
EndTimes and StartTimes. These vectors of time factors represent the start
dates and end dates in discount periodic units. The scale of these units is

To

15 Aug 2000
15 Feb 2001
15 Aug 2001
15 Feb 2002
15 Aug 2002

Rate
0.05
0.056
0.06
0.065
0.075

EndDates, StartDates,...

Discount
0.9756
0.9463
0.9151
0.8799
0.8319

determined by the value of the input variable Compounding.

To examine the time factor outputs, find the corresponding values in the

previous example.

[Disc, EndTimes, StartTimes]

rate2disc(Compounding, Rates,...

2-17

2 Interest-Rate Derivatives

EndDates, StartDates, ValuationDate);

Arrange the two vectors into a single array for easier visualization.

Times = [StartTimes, EndTimes]

Times

o O oOoOoo
a b~ O =

Because the valuation date is equal to the start date for all periods, the
StartTimes vector is composed of 0s. Also, since the value of Compounding is
2, the rates are compounded semiannually, which sets the units of periodic
discount to 6 months. The vector EndDates is composed of dates separated
by intervals of 6 months from the valuation date. This explains why the
EndTimes vector is a progression of integers from 1 to 5.

Alternative Syntax (rate2disc)

The function rate2disc also accommodates an alternative syntax that uses
periodic discount units instead of dates. Since the relationship between
discount factors and interest rates is based on time periods and not on
absolute dates, this form of rate2disc allows you to work directly with time
periods. In this mode, the valuation date corresponds to 0, and the vectors
StartTimes and EndTimes are used as input arguments instead of their date
equivalents, StartDates and EndDates. This syntax for rate2disc is:

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Using as input the StartTimes and EndTimes vectors computed previously,
you should obtain the previous results for the discount factors.

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Disc

0.9756

2-18

Understanding the Interest-Rate Term Structure

0.9463
0.9151
0.8799
0.8319

Calculating Rates from Discounts

The function disc2rate is the complement to rate2disc. It finds the rates
applicable to a set of compounding periods, given the discount factor in those
periods. The syntax for calling this function is:

Rates = disc2rate(Compounding, Disc, EndDates, StartDates,
ValuationDate)

Each argument to this function has the same meaning as in rate2disc.
Use the results found in the previous example to return the rate values you
started with.

Rates = disc2rate(Compounding, Disc, EndDates, StartDates,...
ValuationDate)

Rates =

0.0500
0.0560
0.0600
0.0650
0.0750

Alternative Syntax (disc2rate)

As in the case of rate2disc, disc2rate optionally returns StartTimes and
EndTimes vectors representing the start and end times measured in discount
periodic units. Again, working with the same values as before, you should
obtain the same numbers.

[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,...
EndDates, StartDates, ValuationDate);

Arrange the results in a matrix convenient to display.

2-19

2 Interest-Rate Derivatives

Result = [StartTimes, EndTimes, Rates]

Result

1.0000 0.0500
2.0000 0.0560
3.0000 0.0600
4.0000 0.0650
5.0000 0.0750

O O o oo

As with rate2disc, the relationship between rates and discount factors is
determined by time periods and not by absolute dates. Consequently, the
alternate syntax for disc2rate uses time vectors instead of dates, and it

assumes that the valuation date corresponds to time = 0. The time-based
calling syntax is:

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes);

Using this syntax, you again obtain the original values for the interest rates.

Rates disc2rate(Compounding, Disc, EndTimes, StartTimes)

Rates =

.0500
.0560
.0600
.0650
.0750

o O o oo

Interest-Rate Term Conversions

Interest rate evolution is typically represented by a set of interest rates,
including the beginning and end of the periods the rates apply to. For zero
rates, the start dates are typically at the valuation date, with the rates
extending from that valuation date until their respective maturity dates.

Spot Curve to Forward Curve Conversion

Frequently, given a set of rates including their start and end dates, you may
be interested in finding the rates applicable to different terms (periods). This

2-20

Understanding the Interest-Rate Term Structure

problem 1is addressed by the function ratetimes. This function interpolates
the interest rates given a change in the original terms. The syntax for calling
ratetimes is

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate);

where:
e Compounding represents the frequency at which the zero rates are

compounded when annualized.

® RefRates is a vector of initial interest rates representing the interest rates
applicable to the initial time intervals.

e RefEndDates is a vector of dates representing the end of the interest rate
terms (period) applicable to RefRates.

e RefStartDates is a vector of dates representing the beginning of the
interest rate terms applicable to RefRates.

® EndDates represent the maturity dates for which the interest rates are
interpolated.

e StartDates represent the starting dates for which the interest rates are
interpolated.

e ValuationDate is the date of observation, from which the StartTimes and
EndTimes are calculated. This date represents time = 0.

The input arguments to this function can be separated into two groups:

¢ The initial or reference interest rates, including the terms for which they
are valid

¢ Terms for which the new interest rates are calculated

As an example, consider the rate table specified in “Calculating Discount
Factors from Rates” on page 2-15.

From To Rate
15 Feb 2000 15 Aug 2000 0.05
15 Feb 2000 15 Feb 2001 0.056

2-21

2 Interest-Rate Derivatives

From To

15 Feb 2000 15 Aug 2001
15 Feb 2000 15 Feb 2002
15 Feb 2000 15 Aug 2002

Rate
0.06

0.065
0.075

Assuming that the valuation date is February 15, 2000, these rates represent
zero-coupon bond rates with maturities specified in the second column. Use
the function ratetimes to calculate the forward rates at the beginning of all
periods implied in the table. Assume a compounding value of 2.

% Reference Rates.

RefStartDates = ['15-Feb-2000'];
'15-Feb-2001"'; '15-Aug-2001';...

RefEndDates = ['15-Aug-2000';
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;

ValuationDate = ['15-Feb-2000'];

RefRates = [0.05; 0.056; 0.06; 0.065; 0.075];

% New Terms.

StartDates = ['15-Feb-2000'; '15-Aug-2000'; '15-Feb-2001"';...

'15-Aug-2001"'; '15-Feb-2002'];

EndDates = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';...

'15-Feb-2002"'; '15-Aug-2002'];
% Find the new rates.

Rates = ratetimes(Compounding, RefRates, RefEndDates,...
RefStartDates, EndDates, StartDates, ValuationDate)

Rates =

.0500
.0620
.0680
.0801
.1155

O OO oo

Place these values in a table like the previous one. Observe the evolution of
the forward rates based on the initial zero-coupon rates.

2-22

Understanding the Interest-Rate Term Structure

From To Rate

15 Feb 2000 15 Aug 2000 0.0500
15 Aug 2000 15 Feb 2001 0.0620
15 Feb 2001 15 Aug 2001 0.0680
15 Aug 2001 15 Feb 2002 0.0801
15 Feb 2002 15 Aug 2002 0.1155

Alternative Syntax (ratetimes)

The ratetimes function can provide the additional output arguments
StartTimes and EndTimes, which represent the time factor equivalents to
the StartDates and EndDates vectors. The ratetimes function uses time
factors for interpolating the rates. These time factors are calculated from
the start and end dates, and the valuation date, which are passed as input
arguments. ratetimes can also use time factors directly, assuming time =
0 as the valuation date. This alternate syntax is:

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndTimes, RefStartTimes, EndTimes, StartTimes);

Use this alternate version of ratetimes to find the forward rates again. In
this case, you must first find the time factors of the reference curve. Use
date2time for this.

RefEndTimes = date2time(ValuationDate, RefEndDates, Compounding)

RefEndTimes =

apbp wON =

RefStartTimes = date2time(ValuationDate, RefStartDates,...
Compounding)

2-23

2 Interest-Rate Derivatives

RefStartTimes =
0

These are the expected values, given semiannual discounts (as denoted by a
value of 2 in the variable Compounding), end dates separated by 6-month
periods, and the valuation date equal to the date marking beginning of the
first period (time factor = 0).

Now call ratetimes with the alternate syntax.

[Rates, EndTimes, StartTimes] = ratetimes(Compounding,...
RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes);
Rates =

0.0500
0.0620
0.0680
0.0801
0.1155

EndTimes and StartTimes have, as expected, the same values they had as
input arguments.

Times = [StartTimes, EndTimes]

Times

~O0ODN—=O
a b~ O =

Functions That Model the Interest-Rate Term Structure

Financial Derivatives Toolbox software includes a set of functions to
encapsulate interest-rate term information into a single structure. These
functions present a convenient way to package all information related to

2-24

Understanding the Interest-Rate Term Structure

interest-rate terms into a common format, and to resolve interdependencies
when one or more of the parameters is modified. For information, see:

e “Creating or Modifying (intenvset)” on page 2-25 for a discussion of how
to create or modify an interest-rate term structure (RateSpec) using the
intenvset function

® “Obtaining Specific Properties (intenvget)” on page 2-27 for a discussion of
how to extract specific properties from a RateSpec

Creating or Modifying (intenvset)

The main function to create or modify an interest-rate term structure
RateSpec (rates specification) is intenvset. If the first argument to this
function is a previously created RateSpec, the function modifies the existing
rate specification and returns a new one. Otherwise, it creates a RateSpec.

Use intenvset to create or modify an interest-rate’s term structureRateSpec.

If the first argument to intenvset is a previously created RateSpec, the
function modifies the existing rate specification and returns a new one;
otherwise, intenvset creates a RateSpec.

When using RateSpec to specify the rate term structure to price instruments
based on yields (zero coupon rates) or forward rates, specify zero rates or
forward rates as the input argument. However, the RateSpec structure is not
limited or specific to this problem domain. RateSpec is an encapsulation

of rates-times relationships; intenvset acts as either a constructor or a
modifier, and intenvget as an accessor. The interest rate models supported
by the Financial Derivatives Toolbox software work either with zero coupon
rates or forward rates.

The other intenvset arguments are property-value pairs, indicating the new

value for these properties. The properties that can be specified or modified are:

® Basis
e Compounding
® Disc

e EndDates

EndMonthRule

2-25

2 Interest-Rate Derivatives

® Rates

® StartDates

® ValuationDate

To learn about the properties EndMonthRule and Basis, type

help ftbEndMonthRule and help ftbBasis or see the Financial Toolbox
documentation.

Consider again the original table of interest rates (see “Calculating Discount
Factors from Rates” on page 2-15).

From To Rate
15 Feb 2000 15 Aug 2000 0.05
15 Feb 2000 15 Feb 2001 0.056
15 Feb 2000 15 Aug 2001 0.06
15 Feb 2000 15 Feb 2002 0.065
15 Feb 2000 15 Aug 2002 0.075

Use the information in this table to populate the RateSpec structure.

StartDates = ['15-Feb-2000'];

EndDates = ['15-Aug-2000";
'15-Feb-2001";
'15-Aug-2001";
'15-Feb-2002"';
'15-Aug-2002'];

Compounding = 2;

ValuationDate = ['15-Feb-2000'];

Rates = [0.05; 0.056; 0.06; 0.065; 0.075];

rs = intenvset('Compounding',Compounding, 'StartDates',...
StartDates, 'EndDates', EndDates, 'Rates', Rates,...
'ValuationDate', ValuationDate)

rs =

2-26

Understanding the Interest-Rate Term Structure

FinObj: 'RateSpec'
Compounding: 2
Disc: [5x1 double]
Rates: [5x1 double]
EndTimes: [5x1 double]
StartTimes: [5x1 double]
EndDates: [5x1 double]
StartDates: 730531
ValuationDate: 730531
Basis: 0
EndMonthRule: 1

Some of the properties filled in the structure were not passed explicitly in
the call to RateSpec. The values of the automatically completed properties
depend on the properties that are explicitly passed. Consider for example
the StartTimes and EndTimes vectors. Since the StartDates and EndDates
vectors are passed in, and the ValuationDate, intenvset has all the
information required to calculate StartTimes and EndTimes. Hence, these
two properties are read-only.

Obtaining Specific Properties (intenvget)

The complementary function to intenvset is intenvget, which gets function
specific properties from the interest-rate term structure. Its syntax is:
ParameterValue = intenvget(RateSpec, 'ParameterName')

To obtain the vector EndTimes from the RateSpec structure, enter:

EndTimes = intenvget(rs, 'EndTimes')

EndTimes

a b oON =

2-27

2 Interest-Rate Derivatives

To obtain Disc, the values for the discount factors that were calculated
automatically by intenvset, type:

Disc intenvget(rs, 'Disc')

Disc

0.9756
0.9463
0.9151
0.8799
0.8319

These discount factors correspond to the periods starting from StartDates
and ending in EndDates.

Caution Although you can directly access these fields within the structure
instead of using intenvget, it is advised not to do so. The format of the
interest-rate term structure could change in future versions of the toolbox.
Should that happen, any code accessing the RateSpec fields directly would
stop working.

Now use the RateSpec structure with its functions to examine how changes in
specific properties of the interest-rate term structure affect those depending
on it. As an exercise, change the value of Compounding from 2 (semiannual)
to 1 (annual).

rs = intenvset(rs, 'Compounding', 1);

Since StartTimes and EndTimes are measured in units of periodic discount, a
change in Compounding from 2 to 1 redefines the basic unit from semiannual
to annual. This means that a period of 6 months is represented with a value
of 0.5, and a period of 1 year is represented by 1. To obtain the vectors
StartTimes and EndTimes, enter:

StartTimes = intenvget(rs, 'StartTimes');
EndTimes = intenvget(rs, 'EndTimes');
Times = [StartTimes, EndTimes]

2-28

Understanding the Interest-Rate Term Structure

Times =

.5000
.0000
.5000
.0000

0
1
1
2
2.5000

O OO oo

Since all the values in StartDates are the same as the valuation date, all
StartTimes values are 0. On the other hand, the values in the EndDates
vector are dates separated by 6-month periods. Since the redefined value
of compounding is 1, EndTimes becomes a sequence of numbers separated
by increments of 0.5.

2-29

2 Interest-Rate Derivatives

Computing Prices and Sensitivities Using the Interest-Rate
Term Structure

In this section...

“Introduction” on page 2-30
“Computing Instrument Prices” on page 2-31

“Computing Instrument Sensitivities” on page 2-33

Introduction

The instruments can be presented to the functions as a portfolio of different
types of instruments or as groups of instruments of the same type. The
current version of the toolbox can compute price and sensitivities for four
instrument types using interest-rate curves:

Bonds

Fixed-rate notes

Floating-rate notes

* Swaps

In addition to these instruments, the toolbox also supports the calculation of
price and sensitivities of arbitrary sets of cash flows.

Note that options and interest-rate floors and caps are absent from the
above list of supported instruments. These instruments are not supported
because their pricing and sensitivity function require a stochastic model for
the evolution of interest rates. The interest-rate term structure used for
pricing is treated as deterministic, and as such is not adequate for pricing
these instruments.

Financial Derivatives Toolbox software also contains functions that use
the Heath-Jarrow-Morton (HJM) and Black-Derman-Toy (BDT) models to
compute prices and sensitivities for financial instruments. These models
support computations involving options and interest-rate floors and caps.
See “Computing Prices and Sensitivities Using Interest-Rate Tree Models”

2-30

Computing Prices and Sensitivities Using the InterestRate Term Structure

on page 2-62 for information on computing price and sensitivities of financial
instruments using the HJM and BDT models.

Computing Instrument Prices

The main function used for pricing portfolios of instruments is intenvprice.
This function works with the family of functions that calculate the prices of
individual types of instruments. When called, intenvprice classifies the
portfolio contained in InstSet by instrument type, and calls the appropriate
pricing functions. The map between instrument types and the pricing function
intenvprice calls is

bondbyzero: Price a bond by a set of zero curves
fixedbyzero: Price a fixed-rate note by a set of zero curves
floatbyzero: Price a floating-rate note by a set of zero curves
swapbyzero: Price a swap by a set of zero curves

You can use each of these functions individually to price an instrument.
Consult the reference pages for specific information on using these functions.

intenvprice takes as input an interest-rate term structure created with
intenvset, and a portfolio of interest-rate contingent derivatives instruments
created with instadd. To learn more about instadd and the interest-rate
term structure, see Chapter 1, “Getting Started”.

The syntax for using intenvprice to price an entire portfolio is

Price = intenvprice(RateSpec, InstSet)

where:

® RateSpec is the interest-rate term structure.

e InstSet is the name of the portfolio.

2-31

2 Interest-Rate Derivatives

Example: Pricing a Portfolio of Instruments

Consider this example of using the intenvprice function to price a portfolio
of instruments supplied with Financial Derivatives Toolbox software.

The provided MAT-file deriv.mat stores a portfolio as an instrument set
variable ZeroInstSet. The MAT-file also contains the interest-rate term
structure ZeroRateSpec. You can display the instruments with the function
instdisp.

load deriv.mat;

instdisp(ZerolInstSet)

Index Type CouponRate Settle Maturity Period Basis...

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN. ..

2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN. ..
Index Type CouponRate Settle Maturity FixedReset Basis...

3 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN. ..
Index Type Spread Settle Maturity FloatReset Basis...
4 Float 20 01-Jan-2000 01-Jan-2003 1 NaN. ..
Index Type LegRate Settle Maturity LegReset Basis...
5 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN. ..

Use intenvprice to calculate the prices for the instruments contained in
the portfolio ZeroInstSet.

format bank
Prices = intenvprice(ZeroRateSpec, ZeroInstSet)
Prices

98.72
97.53
98.72
100.55
3.69

The output Prices is a vector containing the prices of all the instruments
in the portfolio in the order indicated by the Index column displayed by

2-32

Computing Prices and Sensitivities Using the InterestRate Term Structure

instdisp. Consequently, the first two elements in Prices correspond to the
first two bonds; the third element corresponds to the fixed-rate note; the
fourth to the floating-rate note; and the fifth element corresponds to the price
of the swap.

Computing Instrument Sensitivities

In general, you can compute sensitivities either as dollar price changes or
as percentage price changes. The toolbox reports all sensitivities as dollar
sensitivities.

Using the interest-rate term structure, you can calculate two types of
derivative price sensitivities, delta and gamma. Delta represents the dollar
sensitivity of prices to shifts in the observed forward yield curve. Gamma
represents the dollar sensitivity of delta to shifts in the observed forward
yield curve.

The intenvsens function computes instrument sensitivities and instrument
prices. If you need both the prices and sensitivity measures, use intenvsens.
A separate call to intenvprice is not required.

Here is the syntax

[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)

where, as before:

® RateSpec is the interest-rate term structure.

® InstSet is the name of the portfolio.

Example: Sensitivities and Prices

Here is an example that uses intenvsens to calculate both sensitivities and
prices.

format bank
load deriv.mat;
[Delta, Gamma, Price] = intenvsens(ZeroRateSpec, ZerolInstSet);

Display the results in a single matrix in bank format.

2-33

2 Interest-Rate Derivatives

All = [Delta Gamma Price]
All =
-272.64 1029.84 98.72
-347.44 1622.65 97.53
-272.64 1029.84 98.72
-1.04 3.31 100.55
-282.04 1059.62 3.69

To view the per-dollar sensitivity, divide the first two columns by the last one.

[Delta./Price, Gamma./Price, Price]

ans =
-2.76 10.43 98.72
-3.56 16.64 97.53
-2.76 10.43 98.72
-0.01 0.03 100.55
-76.39 286.98 3.69

2-34

Understanding Interest-Rate Tree Models

Understanding Interest-Rate Tree Models

In this section...

“Introduction” on page 2-35

“Building a Tree of Forward Rates” on page 2-36

“Specifying the Volatility Model (VolSpec)” on page 2-38

“Specifying the Interest-Rate Term Structure (RateSpec)” on page 2-41
“Calibrating the Hull-White Model Using Market Data” on page 2-42
“Specifying the Time Structure (TimeSpec)” on page 2-47

“Examples of Tree Creation” on page 2-49

“Examining Trees” on page 2-50

Introduction

Financial Derivatives Toolbox software supports the Black-Derman-Toy
(BDT), Black-Karasinski (BK), Heath-Jarrow-Morton (HJM), and Hull-White
(HW) interest-rate models. The Heath-Jarrow-Morton model is one of the
most widely used models for pricing interest-rate derivatives. The model
considers a given initial term structure of interest rates and a specification
of the volatility of forward rates to build a tree representing the evolution of
the interest rates, based on a statistical process. For further explanation,
see the book Modelling Fixed Income Securities and Interest Rate Options

by Robert A. Jarrow.

The Black-Derman-Toy model is another analytical model commonly used for
pricing interest-rate derivatives. The model considers a given initial zero rate
term structure of interest rates and a specification of the yield volatilities of
long rates to build a tree representing the evolution of the interest rates. For
further explanation, see the paper “A One Factor Model of Interest Rates
and its Application to Treasury Bond Options” by Fischer Black, Emanuel
Derman, and William Toy.

The Hull-White model incorporates the initial term structure of interest rates
and the volatility term structure to build a trinomial recombining tree of short
rates. The resulting tree is used to value interest rate dependent securities.

2-35

2 Interest-Rate Derivatives

2-36

The implementation of the Hull-White model in Financial Derivatives Toolbox
software is limited to one factor.

The Black-Karasinski model is a single factor, log-normal version of the
Hull-White model.

For further information on the Hull-White and Black-Karasinski models, see
the book Options, Futures, and Other Derivatives by John C. Hull.

Building a Tree of Forward Rates

The tree of forward rates is the fundamental unit representing the evolution
of interest rates in a given period of time. This section explains how to create
a forward-rate tree using Financial Derivatives Toolbox software.

Note To avoid needless repetition, this document uses the HJM and BDT
models to illustrate the creation and use of interest-rate trees. The HW and
BK models are similar to the BDT model. Where specific differences exist,
they are documented in “HW and BK Tree Structures” on page 2-57.

The MATLAB functions that create rate trees are hjmtree and bdttree.
The hjmtree function creates the structure, HUMTree, containing time and
forward-rate information for a bushy tree. The bdttree function creates a
similar structure, BDTTree, for a recombining tree.

This structure is a self-contained unit that includes the tree of rates (found
in the FwdTree field of the structure) and the volatility, rate, and time
specifications used in building this tree.

These functions take three structures as input arguments:
® The volatility model VolSpec. (See “Specifying the Volatility Model
(VolSpec)” on page 2-38.)

® The interest-rate term structure RateSpec. (See “Specifying the
Interest-Rate Term Structure (RateSpec)” on page 2-41.)

® The tree time layout TimeSpec. (See “Specifying the Time Structure
(TimeSpec)” on page 2-47.)

Understanding Interest-Rate Tree Models

An easy way to visualize any trees you create is with the treeviewer function,
which displays trees in a graphical manner. See “Graphical Representation of
Trees” on page 2-75 for information about treeviewer.

Calling Sequence
The calling syntax for hjmtree is

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)
Similarly, the calling syntax for bdttree is
BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

Each of these functions requires VolSpec, RateSpec, and TimeSpec input
arguments:

® VolSpec is a structure that specifies the forward-rate volatility process. You
create VolSpec using either of the functions hjmvolspec or bdtvolspec.

The hjmvolspec function supports the specification of up to three factors.
It handles these models for the volatility of the interest-rate term structure:

= Constant

Stationary

Exponential

= Vasicek

Proportional

A one-factor model assumes that the interest term structure is affected by

a single source of uncertainty. Incorporating multiple factors allows you to
specify different types of shifts in the shape and location of the interest-rate
structure. See hjmvolspec for details.

The bdtvolspec function supports only a single volatility factor. The
volatility remains constant between pairs of nodes on the tree. You supply
the input volatility values in a vector of decimal values. See bdtvolspec
for details.

2-37

2 Interest-Rate Derivatives

2-38

® RateSpec is the interest-rate specification of the initial rate curve. You
create this structure with the function intenvset. (See “Functions That
Model the Interest-Rate Term Structure” on page 2-24.)

® TimeSpec is the tree time layout specification. You create this variable with
the functions hjmtimespec or bdttimespec. It represents the mapping
between level times and level dates for rate quoting. This structure
indirectly determines the number of levels in the tree.

Specifying the Volatility Model (VolSpec)

Because HJM supports multifactor (up to 3) volatility models while BDT (also,
BK and HW) supports only a single volatility factor, the hjmvolspec and
bdtvolspec functions require different inputs and generate slightly different
outputs. For examples, see “Creating an HJM Volatility Model” on page 2-38.
For BDT examples see “Creating a BDT Volatility Model” on page 2-40.

Creating an HJM Voldatility Model

The function hjmvolspec generates the structure VolSpec, which specifies

the volatility process o (¢,T') used in the creation of the forward-rate trees. In
this context capital T represents the starting time of the forward rate, and

t represents the observation time. The volatility process can be constructed
from a combination of factors specified sequentially in the call to function that
creates it. Each factor specification starts with a string specifying the name of
the factor, followed by the pertinent parameters.

HJM Volatility Specification Example. Consider an example that uses
a single factor, specifically, a constant-sigma factor. The constant factor
specification requires only one parameter, the value of o . In this case, the
value corresponds to 0.10.

HJMVolSpec hjmvolspec('Constant', 0.10)

HJMVolSpec

FinObj: 'HJMVolSpec'

FactorModels: {'Constant'}

FactorArgs: {{1x1 cell}}
SigmaShift: O
NumFactors: 1

Understanding Interest-Rate Tree Models

NumBranch: 2
PBranch: [0.5000 0.5000]
Fact2Branch: [-1 1]

The NumFactors field of the VolSpec structure, VolSpec.NumFactors =

1, reveals that the number of factors used to generate VolSpec was one.
The FactorModels field indicates that it is a Constant factor, and the
NumBranches field indicates the number of branches. As a consequence, each
node of the resulting tree has two branches, one going up, and the other
going down.

Consider now a two-factor volatility process made from a proportional factor
and an exponential factor.

°

% Exponential factor

Sigma 0 = 0.1;

Lambda = 1;

% Proportional factor

CurveProp = [0.11765; 0.08825; 0.06865];

CurveTerm = [1 ; 2 3 1

% Build VolSpec

HJMVolSpec = hjmvolspec('Proportional’, CurveProp, CurveTerm,...

1e6, 'Exponential', Sigma_0, Lambda)
HJMVolSpec =

FinObj: 'HJMVolSpec'
FactorModels: {'Proportional' 'Exponential'}
FactorArgs: {{1x3 cell} {1x2 cell}}
SigmaShift: 0
NumFactors: 2
NumBranch: 3
PBranch: [0.2500 0.2500 0.5000]
Fact2Branch: [2x3 double]

The output shows that the volatility specification was generated using two

factors. The tree has 3 branches per node. Each branch has probabilities of
0.25, 0.25, and 0.5, going from top to bottom.

2-39

2 Interest-Rate Derivatives

2-40

Creating a BDT Volatility Model

The function bdtvolspec generates the structure VolSpec, which specifies
the volatility process. The function requires three input arguments:

® The valuation date ValuationDate
® The yield volatility end dates VolDates
® The yield volatility values VolCurve

An optional fourth argument InterpMethod, specifying the interpolation
method, can be included.

The syntax used for calling bdtvolspec is:

BDTVolSpec = bdtvolspec(ValuationDate, VolDates, VolCurve,...
InterpMethod)

where:

® ValuationDate is the first observation date in the tree.
® VolDates is a vector of dates representing yield volatility end dates.
® VolCurve is a vector of yield volatility values.

® InterpMethod is the method of interpolation to use. The default is 1inear.

BDT Volatility Specification Example. Consider the following example:

ValuationDate = datenum('01-01-2000"');

EndDates = datenum(['01-01-2001'; '01-01-2002'; '01-01-2003"';
'01-01-2004'; '01-01-2005']);

Volatility = [.2; .19; .18; .17; .16];

Use bdtvolspec to create a volatility specification. Because no interpolation
method is explicitly specified, the function uses the linear default.

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec

FinObj: 'BDTVolSpec'
ValuationDate: 730486

Understanding Interest-Rate Tree Models

VolDates: [5x1 double]
VolCurve: [5x1 double]
VolInterpMethod: 'linear'

Specifying the Interest-Rate Term Structure (RateSpec)

The structure RateSpec is an interest term structure that defines the initial
forward-rate specification from which the tree rates are derived. “Functions
That Model the Interest-Rate Term Structure” on page 2-24 explains how to
create these structures using the function intenvset, given the interest rates,
the starting and ending dates for each rate, and the compounding value.

Rate Specification Creation Example
Consider the following example:

Compounding = 1;

Rates = [0.02; 0.02; 0.02; 0.02];

StartDates = ['01-Jan-2000"';
'01-dan-2001";
'01-Jdan-2002"';
'01-Jdan-2003'];

EndDates = ['01-Jdan-2001";
'01-Jdan-2002"';
'01-Jdan-2003"';
'01-dan-2004"'];

ValuationDate = '01-Jan-2000';

RateSpec = intenvset('Compounding',1,'Rates', Rates,...
'StartDates', StartDates, 'EndDates', EndDates,...
'ValuationDate', ValuationDate)

RateSpec =

FinObj: 'RateSpec'
Compounding: 1
Disc: [4x1 double]
Rates: [4x1 double]
EndTimes: [4x1 double]
StartTimes: [4x1 double]
EndDates: [4x1 double]

2-41

2 Interest-Rate Derivatives

2-42

StartDates: [4x1 double]
ValuationDate: 730486
Basis: O
EndMonthRule: 1

Use the function datedisp to examine the dates defined in the variable
RateSpec. For example:

datedisp(RateSpec.ValuationDate)
01-Jan-2000

Calibrating the Hull-White Model Using Market Data

The pricing of interest rate derivative securities relies on models that describe
the underlying process. These interest rate models depend on one or more
parameters that you must determine by matching the model predictions to the
existing data available in the market. In the Hull-White model, there are two
parameters related to the short rate process: mean reversion and volatility.
Determining these parameters, such that the model is able to reproduce as
close as possible the prices of caps or floors observed in the market, is called
calibration. The calibration routines find the parameters that minimize the
difference between the model price predictions and the market prices for
caps and floors.

In the case of the Hull-White model, the minimization is two dimensional
with respect to mean reversion (a) and volatility (o). That is, calibrating the
Hull-White model minimizes the difference between the model prices and
market prices for caps and floors:

(ModelPrice(a , o) - MarketPrice)
(MarketPrice)

Hull-White Model Calibration Example

You can use hwcalbycap and hwcalbyfloor to determine the volatility
parameters, mean reversion (a) and volatility (o), such that the model fits the
prices of actively traded instruments for caps and floors as closely as possible.
Consider the following caplet market information:

MarketMat = {'21-Mar-2008"';
'21-Jun-2008";

Understanding Interest-Rate Tree Models

'21-Sep-2008";
'21-Dec-2008";
'21-Mar-2009";
'21-Jun-2009";
'21-Sep-2009';
'21-Dec-2009';
'21-Mar-2010";
'21-Jun-2010";
'21-Sep-2010";
'21-Dec-2010";
'21-Mar-2011"'};

MarketStrike = [0.0590; 0.0690; 0.0790];

MarketVol = [

o O o o o o

.1533 0.1731 0.1727 0.1752 0.1809 0.1800 0.1805 0.1802 0.1735 0.1757 ...
.1755 0.1755 0.1726;

.1525 0.1725 0.1725 0.1750 0.1800 0.1800 0.1800 0.1800 0.1725 0.1750 ...
.1750 0.1750 0.1725;

.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794 0.1733 0.1751
.1750 0.1745 0.1719];

1 Create RateSpec using the following data:

Rates= [

0
0
0
0
0
0
0
0
0
0
0
0
0
0

ValuationDate

0627;

.0657;
.0691;
.0717;
.0739;
.0755;
.0765;
.0772;
.0779;
.0783;
.0786;
.0789;
.0792;
.07931;

'21-Jan-2008";

EndDates = {'21-Mar-2008"';"'21-Jun-2008"';'21-Sep-2008"';'21-Dec-2008";...

2-43

2 Interest-Rate Derivatives

'21-Mar-2009';'21-Jun-2009"'; '21-Sep-2009';'21-Dec-2009';....
'21-Mar-2010';'21-Jun-2010"'; '21-Sep-2010';'21-Dec-2010"';....
'21-Mar-2011"';'21-Jun-2011"'};

Compounding = 4;

RateSpec = intenvset('ValuationDate', ValuationDate,
'StartDates', ValuationDate, 'EndDates', EndDates,
'Rates', Rates, 'Compounding', Compounding, 'Basis', 0);

2 Call the calibration routine to find the values for the volatility parameters
a and o:

Settle = ' Jan-21-2008';
Maturity = 'Mar-21-2011"';
Strike = 0.0690;

Reset = 4;

Principal = 1000;

Basis = 0;

o=optimset('TolFun',100*eps);

[Alpha, Sigma] = hwcalbycap(RateSpec, MarketStrike, MarketMat, MarketVol,...
Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal, 'Basis',...
Basis, 'OptimOptions', o)

Warning: LSQNONLIN did not converge to an optimal solution. It exited with
exitflag = 2.

LSQNONLIN Diagnostic Message: '

Local minimum possible.

1sgnonlin stopped because the size of the current step is less than
the default value of the step size tolerance.

> In hwcalbycapfloor at 85
In hwcalbycap at 77

Alpha =

1.0000e-006

2-44

Understanding Interest-Rate Tree Models

Sigma =
0.0127

The warning above indicates that the conversion was not optimal. The
search algorithm used by the Optimization Toolbox™ function 1sqnonlin
could not find a solution that complies with all the constraints used by the
function. To discern whether the solution is acceptable, you must look at
the results of the optimization by specifying a third output (OptimOut)

for hwcalbycap.

[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMat,...
MarketVol, Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal,...
'Basis', Basis, 'OptimOptions', 0);

The OptimOut.residual field of the OptimOut structure is the optimization
residual. This value contains the difference between the Black

caplets and those calculated during the optimization. You can use the
OptimOut.residual value to calculate the percentual difference (error)
compared to Black Caplet prices and then decide whether the residual

is acceptable. There will almost always be some residual, so you must
decide if parametrizing the market with a single value of alpha and sigma
is acceptable.

3 You can price the caplets using the market data and Black’s formula to
obtain the reference caplet values:

MarketMatNum = datenum(MarketMat);

[Mats,Strikes] = meshgrid(MarketMatNum, MarketStrike);

FlatVol = interp2(MarketMatNum, MarketStrike, MarketVol, datenum(Maturity),...
Strike, 'spline');

[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, FlatVol,...
'Reset', Reset, 'Basis', Basis, 'Principal', Principal);

Caplets = Caplets(2:end)’';

4 You can compare the optimized values and the Black values and display
graphically:

OptimCaplets = Caplets+OptimOut.residual;
disp([Caplets OptimCaplets])
plot(MarketMatNum(2:end), Caplets, 'or', MarketMatNum(2:end), OptimCaplets, '*b');

2-45

2 Interest-Rate Derivatives

2-46

datetick('x', 2)

xlabel('Caplet Maturity');

ylabel('Caplet Price');

title('Black and Calibrated Caplets');

h = legend('Black Caplets', 'Calibrated Caplets');
set(h, 'color', [0.9 0.9 0.9]);

set(h, 'Location', 'SouthEast');

set(gcf, 'NumberTitle', 'off')

grid on

0.3216 0.3643

1.6363 1.6612
2.4872 2.4983
3.1912 3.1883
3.4121 3.4051
3.2698 3.2653
3.2400 3.2379
3.4819 3.4699
3.2437 3.2426
3.1968 3.1977
3.3011 3.2980
3.3771 3.3684

5 To visualize this, consider the following comparison:

Understanding Interest-Rate Tree Models

NN _lolx]
Fle Edit View Insert Tools Desktop Window Help =
DGde [T EL- 2|0E|aD
Black and Calibrated Caplets
3.5 % T
1 # 1 4 ®
s FE @ e 0
3_1 |
2B e iti in b
8 o
o
I]
@ #*]
B e e
) SR S—— I}; ----------------
e R e
: : < Black Caplets
: : #* Calibrated Caplets
0 | | T
01/01/08 01/01/09 01/0110 01/01/11 01/0112
Caplet Maturity

Specifying the Time Structure (TimeSpec)

The structure TimeSpec specifies the time structure for an interest-rate tree.
This structure defines the mapping between the observation times at each
level of the tree and the corresponding dates.

TimeSpec is built using either the hjmtimespec or bdttimespec function.
These functions require three input arguments:

® The valuation date ValuationDate
® The maturity date Maturity

® The compounding rate Compounding
For example, the syntax used for calling hjmtimespec is
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

where:

2-47

2 Interest-Rate Derivatives

2-48

® ValuationDate is the first observation date in the tree.

® Maturity is a vector of dates representing the cash flow dates of the tree.
Any instrument cash flows with these maturities fall on tree nodes.

® Compounding is the frequency at which the rates are compounded when
annualized.

Creating a Time Specification

Calling the time specification creation functions with the same data used to
create the interest-rate term structure, RateSpec builds the structure that
specifies the time layout for the tree.

HJM Time Specification Example. Consider the following example:

Maturity = EndDates;
HJMTimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

HJMTimeSpec =

FinObj: 'HJMTimeSpec'
ValuationDate: 730486
Maturity: [4x1 double]
Compounding: 1
Basis: 0
EndMonthRule: 1

Note that maturities specified when building TimeSpec need not coincide
with the EndDates of the rate intervals in RateSpec. Since TimeSpec defines
the time-date mapping of the tree, the rates in RateSpec are interpolated to
obtain the initial rates with maturities equal to those in TimeSpec.

Creating a BDT Time Specification. Consider the following example:

Maturity = EndDates;
BDTTimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

BDTTimeSpec =

FinObj: 'BDTTimeSpec'
ValuationDate: 730486

Understanding Interest-Rate Tree Models

Maturity: [4x1 double]

Compounding: 1

Basis: O

EndMonthRule: 1

Examples of Tree Creation

Use the VolSpec, RateSpec, and TimeSpec you have previously created as
inputs to the functions used to create HJIM and BDT trees.

Creating an HJM Tree

% Reset the volatility factor to the Constant case

HJMVolSpec

HJMTree

HJMTree

FinObj:
VolSpec:

TimeSpec:

RateSpec:
tObs:
TFwd:

CFlowT:

:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

FwdTree

= hjmvolspec('Constant', 0.10);

hjmtree (HJMVolSpec, RateSpec, HJMTimeSpec)

"HJMFwdTree'

[1x1 struct]

[1x1 struct]

[1x1 struct]

[0 12 3]

{[4x1 double] [3x1 double] [2x1 double] [3]}
{[4x1 double] [3x1 double] [2x1 double] [4]}

Creating a BDT Tree

Now use the previously computed values for VolSpec, RateSpec, and
TimeSpec as input to the function bdttree to create a BDT tree.

BDTTree

BDTTree

FinObj

VolSpec:
TimeSpec:

bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

'BDTFwdTree'
[1x1 struct]
[1x1 struct]

2-49

2 Interest-Rate Derivatives

RateSpec: [1x1 struct]
tObs: [0 1.00 2.00 3.00]
TFwd: {[4x1 double] [3x1 double] [2x1 double] [3.00]}
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4.00]}
FwdTree: {[1.02] [1.02 1.02] [1.01 1.02 1.03] [1.01 1.02 1.02 1.03]}

Examining Trees

When working with the models, Financial Derivatives Toolbox software uses
trees to represent forward rates, prices, and so on. At the highest level, these
trees have structures wrapped around them. The structures encapsulate
information required to interpret completely the information contained in a
tree.

Consider this example, which uses the interest rate and portfolio data in the
MAT-file deriv.mat included in the toolbox.

Load the data into the MATLAB workspace.

load deriv.mat

Display the list of the variables loaded from the MAT-file.

whos
Name Size Bytes Class Attributes
BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRInstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet 1x1 12434 struct
EQPTree 1x1 5058 struct
HJMInstSet 1x1 15948 struct
HJMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8862 struct

2-50

Understanding Interest-Rate Tree Models

ZeroInstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

HJM Tree Structure
You can now examine in some detail the contents of the HUMTree structure
contained in this file.

HJMTree
HJMTree =
FinObj: 'HJMFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3]

TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
FwdTree: {[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

FwdTree contains the actual forward-rate tree. MATLAB software represents
it as a cell array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values
in FwdTree. The most important are VolSpec, TimeSpec, and RateSpec
which contain the volatility, time structure, and rate structure information
respectively.

First Node. Observe the forward rates in FwdTree. The first node represents
the valuation date, tObs = 0.

HJMTree.FwdTree{1}
ans =

.0356

.0468

.0523
.0563

2-51

2 Interest-Rate Derivatives

Note Financial Derivatives Toolbox software uses inverse discount notation
for forward rates in the tree. An inverse discount represents a factor by which
the current value of an asset 1s multiplied to find its future value. In general,
these forward factors are reciprocals of the discount factors.

Look closely at the RateSpec structure used in generating this tree to see
where these values originate. Arrange the values in a single array.

[HUMTree.RateSpec.StartTimes HJMTree.RateSpec.EndTimes...
HJMTree.RateSpec.Rates]

ans =

0 1.0000 0.0356
1.0000 2.0000 0.0468
2.0000 3.0000 0.0523
3.0000 4.0000 0.0563

If you find the corresponding inverse discounts of the interest rates in the
third column, you have the values at the first node of the tree. You can turn
interest rates into inverse discounts using the function rate2disc.

Disc = rate2disc(HJMTree.TimeSpec.Compounding,...
HJMTree.RateSpec.Rates, HJMTree.RateSpec.EndTimes,...
HJMTree.RateSpec.StartTimes);

FRates = 1./Disc

FRates =
1.0356
1.0468
1.0523
1.0563

Second Node. The second node represents the first-rate observation time,
tObs = 1. This node displays two states: one representing the branch going

up and the other representing the branch going down.

Note that HUMTree.VolSpec.NumBranch = 2.

2-52

Understanding Interest-Rate Tree Models

HJMTree.VolSpec
ans =

FinObj: 'HJMVolSpec'
FactorModels: {'Constant'}
FactorArgs: {{1x1 cell}}
SigmaShift: O
NumFactors: 1
NumBranch: 2
PBranch: [0.5000 0.5000]
Fact2Branch: [-1 1]

Examine the rates of the node corresponding to the up branch.
HJMTree.FwdTree{2}(:,:,1)
ans =
1.0364
1.0420

1.0461

Now examine the corresponding down branch.

HJMTree.FwdTree{2}(:,:,2)

ans

1.0574
1.0631
1.0672

Third Node. The third node represents the second observation time, tObs
= 2. This node contains a total of four states, two representing the branches
going up and the other two representing the branches going down. Examine
the rates of the node corresponding to the up states.

HJMTree.FwdTree{3}(:,:,1)

ans =

2-53

2 Interest-Rate Derivatives

2-54

1.0317 1.0526
1.0358 1.0568

Next examine the corresponding down states.

HJMTree.FwdTree{3}(:,:,2)

ans

1.0526 1.0738
1.0568 1.0781

Isolating a Specific Node. Starting at the third level, indexing within the
tree cell array becomes complex, and isolating a specific node can be difficult.
The function bushpath isolates a specific node by specifying the path to

the node as a vector of branches taken to reach that node. As an example,
consider the node reached by starting from the root node, taking the branch
up, then the branch down, and then another branch down. Given that the tree
has only two branches per node, branches going up correspond to a 1, and
branches going down correspond to a 2. The path up-down-down becomes the
vector [1 2 2].

FRates bushpath(HJMTree.FwdTree, [1 2 2])

FRates

1.0356

1.0364

1.0526

1.0674

bushpath returns the spot rates for all the nodes touched by the path specified
in the input argument, the first one corresponding to the root node, and the

last one corresponding to the target node.

Isolating the same node using direct indexing obtains

HJMTree.FwdTree{4}(:, 3, 2)

Understanding Interest-Rate Tree Models

ans =
1.0674

As expected, this single value corresponds to the last element of the rates
returned by bushpath.

You can use these techniques with any type of tree generated with Financial
Derivatives Toolbox software, such as forward-rate trees or price trees.

BDT Tree Structure
You can now examine in some detail the contents of the BDTTree structure.

BDTTree
BDTTree =

FinObj: 'BDTFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3]
TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
FwdTree: {1x4 cell}

FwdTree contains the actual rate tree. MATLAB software represents it as a
cell array with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values
in FwdTree. The most important are VolSpec, TimeSpec, and RateSpec
which contain the volatility, time structure, and rate structure information
respectively.

Look at the RateSpec structure used in generating this tree to see where
these values originate. Arrange the values in a single array.

[BDTTree.RateSpec.StartTimes BDTTree.RateSpec.EndTimes...
BDTTree.RateSpec.Rates]

2-55

2 Interest-Rate Derivatives

2-56

ans =

1.0000 0.1000
2.0000 0.1100
3.0000 0.1200
4.0000 0.1250

o o oo

Look at the rates in FwdTree. The first node represents the valuation date,
tObs = 0. The second node represents tObs = 1. Examine the rates at the
second, third, and fourth nodes.

BDTTree.FwdTree{2}
ans =
1.0979 1.1432
The second node represents the first observation time, tObs = 1. This node

contains a total of two states, one representing the branch going up (1.0979)
and the other representing the branch going down (1.1432).

Note The convention in this document is to display prices going up on the
upper branch. Consequently, when displaying rates, rates are falling on the
upper branch and increasing on the lower branch.

BDTTree.FwdTree{3}
ans =
1.0976 1.1377 1.1942

The third node represents the second observation time, tObs = 2. This
node contains a total of three states, one representing the branch going up
(1.0976), one representing the branch in the middle (1.1377) and the other
representing the branch going down (1.1942).

BDTTree.FwdTree{4}

Understanding Interest-Rate Tree Models

ans =
1.0872 1.1183 1.1606 1.2179

The fourth node represents the third observation time, tObs = 3. This node
contains a total of four states, one representing the branch going up (1.0872),
two representing the branches in the middle (1.1183 and 1.1606), and the
other representing the branch going down (1.2179).

Isolating a Specific Node. The function treepath isolates a specific node
by specifying the path to the node as a vector of branches taken to reach that
node. As an example, consider the node reached by starting from the root
node, taking the branch up, then the branch down, and finally another branch
down. Given that the tree has only two branches per node, branches going
up correspond to a 1, and branches going down correspond to a 2. The path
up-down-down becomes the vector [1 2 2].

FRates treepath(BDTTree.FwdTree, [1 2 2])

FRates

.1000
.0979
. 1377
.1606

—_ a4

treepath returns the short rates for all the nodes touched by the path
specified in the input argument, the first one corresponding to the root node,
and the last one corresponding to the target node.

HW and BK Tree Structures

The HW and BK tree structures are similar to the BDT tree structure. You can
see this if you examine the sample HW tree contained in the file deriv.mat.

load deriv.mat:
HWTree

FinObj: 'HWFwdTree'
VolSpec: [1x1 struct]

2-57

2 Interest-Rate Derivatives

2-58

TimeSpec: [1x1 struct]

RateSpec: [1x1 struct]

tObs: [0 1 2 3]

dObs: [731947 732313 732678 733043]

CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}

FwdTree: {1x4 cell}

All fields of this structure are similar to their BDT counterparts. There are
two additional fields not present in BDT: Probs and Connect. The Probs field
represents the occurrence probabilities at each branch of each node in the
tree. The Connect field describes the connectivity of the nodes of a given tree
level to nodes to the next tree level.

Probs Field. While BDT and one-factor HJM models have equal probabilities
for each branch at a node, HW and BK do not. For HW and BK trees, the
Probs field indicates the likelihood that a particular branch will be taken in
moving from one node to another node on the next level.

The Probs field consists of a cell array with 1 cell per tree level. Each cell
is a 3-by-NUMNODES array with the top row representing the probability of
an up movement, the middle row representing the probability of a middle
movement, and the last row the probability of a down movement.

As an illustration, consider the first two elements of the Probs field of the
structure, corresponding to the first (root) and second levels of the tree.

HWTree.Probs{1}

0.16666666666667
0.66666666666667
0.16666666666667

HWTree.Probs{2}
0.12361333418768 0.16666666666667 0.21877591615172

0.65761074966060 0.66666666666667 0.65761074966060
0.21877591615172 0.16666666666667 0.12361333418768

Understanding Interest-Rate Tree Models

Reading from top to bottom, the values in HWTree.Probs{1} correspond to the
up, middle, and down probabilities at the root node.

HWTree.Probs{2} is a 3-by-3 matrix of values. The first column represents the
top node, the second column represents the middle node, and the last column

represents the bottom node. As with the root node, the first, second, and third
rows hold the values for up, middle, and down branching off each node.

As expected, the sum of all the probabilities at any node equals 1.
sum(HWTree.Probs{2})
1.0000 1.0000 1.0000
Connect Field. The other field that distinguishes HW and BK tree structures
from the BDT tree structure is Connect. This field describes how each node in
a given level connects to the nodes of the next level. The need for this field

arises from the possibility of nonstandard branching in a tree.

The Connect field of the HW tree structure consists of a cell array with 1
cell per tree level.

HWTree.Connect
ans =
[2] [1x3 double] [1x5 double]

Each cell contains a 1-by-NUMNODES vector. Each value in the vector relates to
a node in the corresponding tree level and represents the index of the node in
the next tree level that the middle branch of the node connects to.
If you subtract 1 from the values contained in Connect, you reveal the index
of the nodes in the next level that the up branch connects to. If you add 1 to

the values, you reveal the index of the corresponding down branch.

As an illustration, consider HWTree.Connect{1}:

HWTree.Connect{1}

ans =

2-59

2 Interest-Rate Derivatives

2-60

2

This indicates that the middle branch of the root node connects to the second
(from the top) node of the next level, as expected. If you subtract 1 from
this value, you obtain 1, which tells you that the up branch goes to the top
node. If you add 1, you obtain 3, which points to the last node of the second
level of the tree.

Now consider level 3 in this example:

HWTree.Connect{3}

2 2 3 4 4
On this level, there is nonstandard branching. This can be easily recognized
because the middle branch of two nodes is connected to the same node on

the next level.

To visualize this, consider the following illustration of the tree.

Here it becomes apparent that there is nonstandard branching at the third
level of the tree, on the top and bottom nodes. The first and second nodes

Understanding Interest-Rate Tree Models

connect to the same trio of nodes on the next level. Similar branching occurs
at the bottom and next-to-bottom nodes of the tree.

2-61

2 Interest-Rate Derivatives

Computing Prices and Sensitivities Using Interest-Rate
Tree Models

In this section...

“Introduction” on page 2-62
“Computing Instrument Prices” on page 2-62

“Computing Instrument Sensitivities” on page 2-71

Introduction

For purposes of illustration, this section relies on the HJM and BDT models.
The HW and BK functions that perform price and sensitivity computations
are not explicitly shown here. Functions that use the HW and BK models
operate similarly to the BDT model.

Computing Instrument Prices

The portfolio pricing functions hjmprice and bdtprice calculate the price
of any set of supported instruments, based on an interest-rate tree. The
functions are capable of pricing these instrument types:

* Bonds

* Bond options

¢ Arbitrary cash flows
¢ Fixed-rate notes

® Floating-rate notes
e Caps

* Floors

* Swaps

* Swaptions

For example, the syntax for calling hjmprice is:

2-62

Computing Prices and Sensitivities Using Interest-Rate Tree Models

[Price, PriceTree] = hjmprice(HJMTree, InstSet, Options)
Similarly, the calling syntax for bdtprice is:
[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

Each function requires two input arguments: the interest-rate tree and the
set of instruments, InstSet. An optional argument Options further controls
the pricing and the output displayed. (See Appendix A, “Derivatives Pricing
Options” for information about the Options argument.)

HJMTree 1s the Heath-Jarrow-Morton tree sampling of a forward-rate process,
created using hjmtree. BDTTree is the Black-Derman-Toy tree sampling of an
interest-rate process, created using bdttree. See “Building a Tree of Forward
Rates” on page 2-36 to learn how to create these structures.

InstSet is the set of instruments to be priced. This structure represents the
set of instruments to be priced independently using the model. Chapter 1,
“Getting Started”, explains how to create this variable.

Options is an options structure created with the function derivset. This
structure defines how the tree is used to find the price of instruments in the
portfolio, and how much additional information is displayed in the command
window when calling the pricing function. If this input argument is not
specified in the call to the pricing function, a default Options structure is
used. The pricing options structure is described in “Pricing Options Structure’
on page A-2.

4

The portfolio pricing functions classify the instruments and call the
appropriate instrument-specific pricing function for each of the instrument
types. The HJM instrument-specific pricing functions are bondbyhjm,
cfbyhjm, fixedbyhjm, floatbyhjm, optbndbyhjm, swapbyhjm, and
swaptionbyhjm. A similarly named set of functions exists for BDT models.
For a list of these, see “Black-Derman-Toy Trees” on page 5-4.

You can also use these functions directly to calculate the price of sets of
instruments of the same type. See Chapter 6, “Functions — Alphabetical List”
for these individual functions for further information.

2-63

2 Interest-Rate Derivatives

HJM Pricing Example

Consider the following example, which uses the portfolio and interest-rate
data in the MAT-file deriv.mat included in the toolbox. Load the data into
the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded
from the MAT-file.

whos

Name Size Bytes Class Attributes
BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRInstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet 1x1 12434 struct
EQPTree 1x1 5058 struct
HJMInstSet 1x1 15948 struct
HJMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8862 struct
ZerolInstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

HUMTree and HIMInstSet are the input arguments required to call the
function hjmprice.

Use the function instdisp to examine the set of instruments contained in the
variable HUMInstSet.

2-64

Computing Prices and Sensitivities Using Interest-Rate Tree Models

instdisp (HJMInstSet)

Index Type CouponRate Settle Maturity Period Basis ... Name Quantity

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN ... 4% bond 100

2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN ... 4% bond 50

Index Type UnderInd OptSpec Strike ExerciseDates AmericanOpt Name Quantity

3 OptBond 2 call 101 01-Jan-2003 NaN Option 101 -50

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity

4 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80
Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity

5 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity

6 Cap 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Cap 30

Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity

7 Floor 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Floor 40

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 6%/20BP Swap 10

Note that there are eight instruments in this portfolio set: two bonds, one
bond option, one fixed-rate note, one floating-rate note, one cap, one floor, and
one swap. Each instrument has a corresponding index that identifies the
instrument prices in the price vector returned by hjmprice.

Now use hjmprice to calculate the price of each instrument in the instrument
set.

Price = hjmprice(HJMTree, HJMInstSet)
Warning: Not all cash flows are aligned with the tree. Result will

be approximated.

Price =

2-65

2 Interest-Rate Derivatives

2-66

98.7159
97.5280
0.0486
98.7159
100.5529
6.2831
0.0486
3.6923

Note The warning shown above appears because some of the cash flows for
the second bond do not fall exactly on a tree node.

load deriv.mat

whos

Name

BDTInstSet
BDTTree
BKInstSet
BKTree
CRRInstSet
CRRTree
EQPInstSet
EQPTree
HJMInstSet
HJMTree
HWInstSet
HWTree
ITTInstSet

BDT Pricing Example
Load the MAT-file deriv.mat into the MATLAB workspace.

Size

1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1

Bytes

15956
5138
15946
5904
12434
5058
12434
5058
15948
5838
15946
5904
12438

Class

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

Use the MATLAB whos command to display a list of the variables loaded
from the MAT-file.

Attributes

Computing Prices and Sensitivities Using Interest-Rate Tree Models

Index

ITTTree 1x1 8862 struct
ZeroInstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

BDTTree and BDTInstSet are the input arguments required to call the
function bdtprice

Use the function instdisp to examine the set of instruments contained in the
variable BDTInstSet.

instdisp(BDTInstSet)

Index Type CouponRate Settle Maturity Period Basis Name Quantity

1 Bond 0.1 01-Jan-2000 01-Jan-2003 1 NaN......... 10% bond 100

2 Bond 0.1 01-Jan-2000 01-Jan-2004 2 NaN......... 10% bond 50

Index Type UnderInd OptSpec Strike ExerciseDates AmericanOpt Name Quantity

3 OptBond 1 call 9501 Jan-2002 NaN Option 95 -50

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
4 Fixed 0.10 01-Jan-2000 01-Jan-2003 1 NaN NaN 10% Fixed 80
Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity
5 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity
6 Cap 0.15 01-Jan-2000 01-Jan-2004 1 NaN NaN 15% Cap 30

Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity
7 Floor 0.09 01-Jan-2000 01-Jan-2004 1 NaN NaN 9% Floor 40

Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
Swap [0.15 10] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 15%/10BP Swap 10

2-67

2 Interest-Rate Derivatives

Note that there are eight instruments in this portfolio set: two bonds, one
bond option, one fixed-rate note, one floating-rate note, one cap, one floor, and
one swap. Each instrument has a corresponding index that identifies the
Iinstrument prices in the price vector returned by bdtprice.

Now use bdtprice to calculate the price of each instrument in the instrument
set.

Price = bdtprice(BDTTree, BDTInstSet)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =

95.5030
93.9079
1.7657
95.5030
100.4865
1.4863
0.0245
7.4222

Price Vector Output

The prices in the output vector Price correspond to the prices at observation
time zero (tObs = 0), which is defined as the valuation date of the
interest-rate tree. The instrument indexing within Price is the same as the
indexing within InstSet.

In the HJM example, the prices in the Price vector correspond to the
instruments in this order.

InstNames = instget(HJMInstSet, 'FieldName', 'Name')

InstNames

4% bond
4% bond
Option 101
4% Fixed

2-68

Computing Prices and Sensitivities Using Interest-Rate Tree Models

20BP Float
3% Cap

% Floor
6%/20BP Swap

Consequently, in the Price vector, the fourth element, 98.7159, represents
the price of the fourth instrument (4% fixed-rate note); the sixth element,
6.2831, represents the price of the sixth instrument (3% cap).

In the BDT example, the prices in the Price vector correspond to the
instruments in this order.

InstNames = instget(BDTInstSet, 'FieldName', 'Name')

InstNames

10% Bond

10% Bond
Option 95

10% Fixed
20BP Float
15% Cap

9% Floor
15%/10BP Swap

Consequently, in the Price vector, the fourth element, 95.5030, represents

the price of the fourth instrument (10% fixed-rate note); the sixth element,
1.4863, represents the price of the sixth instrument (15% cap).

Price Tree Structure Output
If you call a pricing function with two output arguments, for example,

[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet)
you generate a price tree along with the price information.

The optional output price tree structure PriceTree holds all the pricing
information.

2-69

2 Interest-Rate Derivatives

2-70

HJM Price Tree. In the HJIM example, the first field of this structure,
FinObj, indicates that this structure represents a price tree. The second
field, PBush, is the tree holding the price of the instruments in each node of
the tree. The third field, AIBush, is the tree holding the accrued interest

of the instruments in each node of the tree. Finally, the fourth field, tObs,
represents the observation time of each level of PBush and AIBush, with units
in terms of compounding periods.

In this example, the price tree looks like

PriceTree =

FinObj: 'HJMPriceTree'
PBush: {[8x1 double] [8x1x2 double] ...[8x8 double]}
AIBush: {[8x1 double] [8x1x2 double] ... [8x8 double]}
tObs: [0 1 2 3 4]

Both PBush and AIBush are 1-by-5 cell arrays, consistent with the five
observation times of tObs. The data display has been shortened here to fit
on a single line.

Using the command line interface, you can directly examine PriceTree.PBush,
the field within the PriceTree structure that contains the price tree with
the price vectors at every state. The first node represents tObs = 0,
corresponding to the valuation date.

PriceTree.PBush{1}
ans =

98.7159
97.5280
0.0486
98.7159
100.5529
6.2831
0.0486
3.6923

Computing Prices and Sensitivities Using Interest-Rate Tree Models

With this interface, you can observe the prices for al/l instruments in the
portfolio at a specific time.

BDT Price Tree. The BDT output price tree structure PriceTree holds all the
pricing information. The first field of this structure, FinObj, indicates that
this structure represents a price tree. The second field, PTree, is the tree
holding the price of the instruments in each node of the tree. The third field,
AlTree, is the tree holding the accrued interest of the instruments in each
node of the tree. The fourth field, tObs, represents the observation time of
each level of PTree and AITree, with units in terms of compounding periods.

You can directly examine the field within the PriceTree structure, which
contains the price tree with the price vectors at every state. The first node
represents tObs = 0, corresponding to the valuation date.

[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet)
PriceTree.PTree{1}
ans =

95.5030
93.9079
1.7657
95.5030
100.4865
1.4863
0.0245
7.4222

Computing Instrument Sensitivities

Sensitivities can be reported either as dollar price changes or percentage price
changes. The delta, gamma, and vega sensitivities that the toolbox computes
are dollar sensitivities.

The functions hjmsens and bdtsens compute the delta, gamma, and vega
sensitivities of instruments using an interest-rate tree. They also optionally
return the calculated price for each instrument. The sensitivity functions
require the same two input arguments used by the pricing functions (HJMTree
and HIMInstSet for HJM; BDTTree and BDTInstSet for BDT).

2-71

2 Interest-Rate Derivatives

Sensitivity functions calculate the dollar value of delta and gamma by shifting
the observed forward yield curve by 100 basis points in each direction, and
the dollar value of vega by shifting the volatility process by 1%. To obtain
the per-dollar value of the sensitivities, divide the dollar sensitivity by the
price of the corresponding instrument.

HJM Sensitivities Example
The calling syntax for the function is:

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet)

Use the previous example data to calculate the price of instruments.

load deriv.mat

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Note The warning appears because some of the cash flows for the second
bond do not fall exactly on a tree node.

You can conveniently examine the sensitivities and the prices by arranging
them into a single matrix.

All = [Delta, Gamma, Vega, Price]
All =
-272.65 1029.90 0.00 98.72
-347.43 1622.69 -0.04 97.53
-8.08 643.40 34.07 0.05
-272.65 1029.90 0.00 98.72
-1.04 3.31 0 100.55
294.97 6852.56 93.69 6.28
-47.16 8459.99 93.69 0.05
-282.05 1059.68 0.00 3.69

2-72

Computing Prices and Sensitivities Using Interest-Rate Tree Models

As with the prices, each row of the sensitivity vectors corresponds to

the similarly indexed instrument in HUIMInstSet. To view the per-dollar
sensitivities, divide each dollar sensitivity by the corresponding instrument
price.

BDT Sensitivities Example
The calling syntax for the function is:

[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, BDTInstSet);

Arrange the sensitivities and prices into a single matrix.

All = [Delta, Gamma, Vega, Price]
All =

-232.67 803.71 -0.00 95.50
-281.05 1181.93 -0.01 93.91
-50.54 246.02 5.31 1.77
-232.67 803.71 0 95.50
0.84 2.45 0 100.49
78.38 748.98 13.54 1.49
-4.36 382.06 2.50 0.02
-253.283 863.81 0 7.42

To view the per-dollar sensitivities, divide each dollar sensitivity by the
corresponding instrument price.

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]
All =
-2.44 8.42 -0.00 95.50
-2.99 12.59 -0.00 93.91
-28.63 139.34 3.01 1.77
-2.44 8.42 0 95.50
0.01 0.02 0 100.49
52.73 503.92 9.11 1.49
-177.89 15577.42 101.87 0.02
-34.12 116.38 0 7.42

2-73

2 Interest-Rate Derivatives

2-74

Interest-Rate Derivatives Using Closed Form Solutions

Pricing Caps and Floors Using the Black Option Model

Caps and floors are contracts that allow the holder to be protected if interest
rates rise or decrease. The Black model uses a forward price as an underlier
in place of a spot price. The assumption is that the forward price at maturity

of the option is log-normally distributed.

Closed-form solutions for pricing caps and floors using the Black model

support the following tasks:

Task Function
Price the interest rate caps using the Black | capbyblk
option pricing model.

Price the interest rate floors using the Black | floorbyblk

option pricing model.

Graphical Representation of Trees

Graphical Representation of Trees

In this section...

“Introduction” on page 2-75
“Observing Interest Rates” on page 2-75

“Observing Instrument Prices” on page 2-79

Introduction

You can use the function treeviewer to display a graphical representation
of a tree, allowing you to examine interactively the prices and rates on the
nodes of the tree until maturity. To get started with this process, first load
the data file deriv.mat included in this toolbox.

load deriv.mat

Note treeviewer price tree diagrams follow the convention that increasing
prices appear on the upper branch of a tree and, consequently, decreasing
prices appear on the lower branch. Conversely, for interest rate displays,
decreasing interest rates appear on the upper branch (prices are rising) and
increasing interest rates on the lower branch (prices are falling).

For information on the use of treeviewer to observe interest rate movement,
see “Observing Interest Rates” on page 2-75. For information on using
treeviewer to observe the movement of prices, see “Observing Instrument
Prices” on page 2-79.

Observing Interest Rates

If you provide the name of an interest rate tree to the treeviewer function, it
displays a graphical view of the path of interest rates. For example, here is
the treeviewer representation of all the rates along both the up and down
branches of HIMTree.

treeviewer (HJMTree)

2-75

2 Interest-Rate Derivatives

| rreeviener -ioix

File Edit Yiew Insert Tools Window Help

r Tree Visualization

Selection Wisualization

% Path " Table

" MNode and Children ' Diagram
" Plat

Help | Cloze |

The example in “Isolating a Specific Node for a CRRTree” on page 3-19 used
bushpath to find the path of forward rates along an HJM tree by taking the
first branch up and then two branches down the rate tree.

FRates bushpath(HJMTree.FwdTree, [1 2 2])

FRates

.0356
.0364
.0526
.0674

With the treeviewer function you can display the identical information by
clicking along the same sequence of nodes, as shown next.

2-76

Graphical Representation of Trees

<) Tree Yiewer 10l =|
File Edit Yiew | Insert Tools ‘Window Help
r Tree Visualization
; ; ; ; Selection Wisualization
&+ Path " Table
" MNode and Children ' Diagram
" Plat
1.04
1.05
1.07
1.04
0 1 2 3
Help | Cloze |

Next is a treeviewer representation of interest rates along several branches
of BDTTree.

treeviewer (BDTTree)

2-77

2 Interest-Rate Derivatives

<) Tree Yiewer i 10l =|

File Edit Yiew Insert Tools Window Help

r Tree Visualization

Selection Wisualization

% Path " Table

" MNode and Children ' Diagram
" Plat

Help Cloze

Note When using treeviewer with recombining trees, such as BDT, BK,
and HW, you must click each node in succession from the beginning to the
end. Because these trees can recombine, treeviewer is unable to complete
the path automatically.

The example in “Isolating a Specific Node for a CRRTree” on page 3-19 used
treepath to find the path of interest rates taking the first branch up and
then two branches down the rate tree.

FRates = treepath(BDTTree.FwdTree, [1 2 2])

FRates

.1000
.0979
. 1377
.1606

2-78

Graphical Representation of Trees

You can display the identical information by clicking along the same sequence
of nodes, as shown next.

<) Tree Yiewer 10l =|
File Edit Yiew Insert Tools Window | Help
r Tree Visualization
; ; ; ; Selection Wisualization
&+ Path " Table
" MNode and Children ' Diagram
" Plat
1.1
1.1 1.14
1.16
0 1 2 3
Help Cloze

Observing Instrument Prices

To use treeviewer to display a tree of instrument prices, provide the name
of an instrument set along with the name of a price tree in your call to
treeviewer, for example:

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer (PriceTree, HJMInstSet)

2-79

2 Interest-Rate Derivatives

With treeviewer you select each instrument individually in the instrument
portfolio for display.

S rreeviener =i

File Edit Yiew Insert Tools Window Help

r Tree Visualization

; ; ; ; ; Selection Wisualization
% Path " Table
" MNode and Children ' Diagram
" Plat
Instrument: |4°/° bond VI
4% bond
98.72 Option 101

4% Fined
20BP Float
3% Cap

3% Floor
E%/20BP Sway

Help | Cloze |

You can use an analogous process to view instrument prices based on the BDT
interest rate tree included in deriv.mat.

load deriv.mat
[BDTPrice, BDTPriceTree] = bdtprice(BDTTree, BDTInstSet);
treeviewer (BDTPriceTree, BDTInstSet)

2-80

Graphical Representation of Trees

5 treeviener _ioix]
File Edit Yiew Insert Tools Window Help
r Tree Visualization
; ; ; ; ; Selection Wisualization
% Path " Table
" MNode and Children ' Diagram
" Plat
Instrument: |'|U°/° Bond VI
10% Bond
Option 95
10% Fixed
Z20BP Float
18% Cap
+| 9% Floor
18%/10BP Swap
100
91.32
0 1 2 3 4
Help Cloze

Valuation Date Prices

You can use treeviewer instrument-by-instrument to observe instrument
prices through time. For the first 4% bond in the HJM instrument portfolio,
treeviewer indicates a valuation date price of 98.72, the same value obtained
by accessing the PriceTree structure directly.

2-81

2 Interest-Rate Derivatives

<} Tree ¥iewer _ ||:||1|

File Edit Yiew Insert Tools Window Help

r Tree Visualization

; ; ; ; ; Selection Wisualization
% Path " Table
" MNode and Children ' Diagram
" Plat

Instrument: |4°/° bond VI

100.2

98.72

0 1 2 3 4 |

Help Cloze |

As a further example, look at the sixth instrument in the price vector, the 3%
cap. At the valuation date, its value obtained directly from the structure is
6.2831. Use treeviewer on this instrument to confirm this price.

2-82

Graphical Representation of Trees

<} Tree Yiewer i =1ol x|

File Edit Yiew Insert Tools Window Help

r Tree Visualization

; ; ; ; ; Selection Wisualization
% Path " Table
" MNode and Children ' Diagram
" Plat

Instrument: ISX Cap VI

Help Cloze

Additional Observation Times

The second node represents the first-rate observation time, tObs = 1. This
node displays two states, one representing the branch going up and the other
one representing the branch going down.

Examine the prices of the node corresponding to the up branch.

PriceTree.PBush{2}(:,:,1)
ans =

100.1563
99.7309
0.1007
100.1563
100.3782
3.2594
0.1007
3.5597

2-83

2 Interest-Rate Derivatives

As before, you can use treeviewer, this time to examine the price for the 4%
bond on the up branch. treeviewer displays a price of 100.2 for the first
node of the up branch, as expected.

-ioix

File Edit Yiew Insert Tools Window Help

r Tree Visualization

; ; ; ; ; Selection Wisualization
" Path ! Tahle
' Node and Children % Diagram
! Flat

Instrument: |4°/° bond VI

100.8

100.2

98.81

(=N
~a
a1}
= |

Help | Cloze

Now examine the corresponding down branch.

PriceTree.PBush{2}(:,:,2)
ans =

96.3041
94.1986

96.3041
100.3671
8.6342

-0.3923

2-84

Graphical Representation of Trees

Use treeviewer once again, now to observe the price of the 4% bond on the
down branch. The displayed price of 96.3 conforms to the price obtained from
direct access of the PriceTree structure. You may continue this process as
far along the price tree as you want.

<} Tree ¥iewer _ ||:||1|

File Edit Yiew Insert Tools Window Help

r Tree Visualization

; ; ; ; ; Selection Wisualization
" Path ! Tahle
' Node and Children % Diagram
! Flat

Instrument: |4°/° bond VI

98.81

96.3

96.85

Help Cloze

2-85

2 Interest-Rate Derivatives

2-86

Equity Derivatives

¢ “Understanding Equity Trees” on page 3-2
¢ “Understanding Equity Exotic Options” on page 3-22

® “Computing Prices and Sensitivities for Equity Derivatives Using Trees”
on page 3-32

¢ “Equity Derivatives Using Closed-Form Solutions” on page 3-50

3 Equity Derivatives

Understanding Equity Trees

In this section...

“Introduction” on page 3-2

“Building Equity Binary Trees” on page 3-3

“Building Implied Trinomial Trees” on page 3-8

“Examining Equity Trees ” on page 3-16

“Differences Between CRR and EQP Tree Structures” on page 3-20

Introduction

Financial Derivatives Toolbox software supports three types of recombining
tree models to represent the evolution of stock prices:

¢ Cox-Ross-Rubinstein (CRR) model
e Equal probabilities (EQP) model
e Implied trinomial tree (ITT) model

For a discussion of recombining trees, see “Rate and Price Trees” on page 2-11.

The CRR, EQP, and ITT models are examples of discrete time models.
A discrete time model divides time into discrete bits; prices can only be
computed at these specific times.

The CRR model is one of the most common methods used to model the
evolution of stock processes. The strength of the CRR model lies in its
simplicity. It is a good model when dealing with many tree levels. The
CRR model yields the correct expected value for each node of the tree and
provides a good approximation for the corresponding local volatility. The
approximation becomes better as the number of time steps represented in
the tree is increased.

The EQP model is another discrete time model. It has the advantage of
building a tree with the exact volatility in each tree node, even with small
numbers of time steps. It also provides better results than CRR in some
given trading environments, for example, when stock volatility is low and

Understanding Equity Trees

interest rates are high. However, this additional precision causes increased
complexity, which is reflected in the number of calculations required to build
a tree.

The ITT model is a CRR-style implied trinomial tree which takes advantage
of prices quoted from liquid options in the market with varying strikes and
maturities to build a tree that more accurately represents the market. An I'TT
model is commonly used to price exotic options in such a way that they are
consistent with the market prices of standard options.

Building Equity Binary Trees

The tree of stock prices is the fundamental unit representing the evolution
of the price of a stock over a given period of time. The MATLAB functions
crrtree and eqptree create CRR trees and EQP trees respectively. These
functions create an output tree structure along with information about the
parameters used for creating the tree.

The functions crrtree and eqptree take three structures as input arguments:

® The stock parameter structure StockSpec
® The interest-rate term structure RateSpec

® The tree time layout structure TimeSpec

Calling Sequence for Equity Binary Trees

The calling syntax for crrtree is:

CRRTree = crrtree (StockSpec, RateSpec, TimeSpec)

Similarly, the calling syntax for eqptree is:

EQPTree = eqptree (StockSpec, RateSpec, TimeSpec)

Both functions require the structures StockSpec, RateSpec, and TimeSpec
as input arguments:

® StockSpec is a structure that specifies parameters of the stock whose price
evolution is represented by the tree. This structure, created using the

3-3

3 Equity Derivatives

3-4

function stockspec, contains information such as the stock’s original price,
its volatility, and its dividend payment information.

® RateSpec is the interest-rate specification of the initial rate curve. Create
this structure with the function intenvset.

® TimeSpec is the tree time layout specification. Create these structures
with the functions crrtimespec and eqptimespec. The structures
contain information regarding the mapping of relevant dates into the tree
structure, plus the number of time steps used for building the tree.

Specifying the Stock Structure for Equity Binary Trees

The structure StockSpec encapsulates the stock-specific information required
for building the binary tree of an individual stock’s price movement.

You generate StockSpec with the function stockspec. This function requires
two input arguments and accepts up to three additional input arguments that
depend on the existence and type of dividend payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType,
DividendAmounts, ExDividendDates)

where:

® Sigma is the decimal annual volatility of the underlying security.
® AssetPrice is the price of the stock at the valuation date.

® DividendType is a string specifying the type of dividend paid by the stock.
Allowed values are cash, constant, or continuous.

¢ DividendAmounts has a value that depends on the specification of
DividendType. For DividendType cash, DividendAmounts is a vector of
cash dividends. For DividendType constant, it is a vector of constant
annualized dividend yields. For DividendType continuous, it is a scalar
representing a continuously annualized dividend yield.

® ExDividendDates also has a value that depends on the nature of
DividendType. For DividendType cash or constant, ExDividendDates is

Understanding Equity Trees

vector of dividend dates. For DividendType continuous, ExDividendDates
is ignored.

Stock Structure Example Using a Binary Tree

Consider a stock with a price of $100 and an annual volatility of 15%. Assume
that the stock pays three cash $5.00 dividends on dates January 01, 2003; July
01, 2003; and January 01, 2004. You specify these parameters in MATLAB as:

Sigma = 0.15;

AssetPrice = 100;

DividendType = 'cash';

DividendAmounts = [5; 5; 5];

ExDividendDates = {'jan-01-2004', 'july-01-2005', 'jan-01-2006'};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

StockSpec =

FinObj: 'StockSpec'
Sigma: 0.1500
AssetPrice: 100
DividendType: 'cash'
DividendAmounts: [3x1 double]
ExDividendDates: [3x1 double]

Specifying the Interest-Rate Term Structure for Equity Binary
Trees

The RateSpec structure defines the interest rate environment used when
building the stock price binary tree. “Functions That Model the Interest-Rate
Term Structure” on page 2-24 explains how to create these structures using
the function intenvset, given the interest rates, the starting and ending
dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Equity Binary Trees
The TimeSpec structure defines the tree layout of the binary tree:

¢ It maps the valuation and maturity dates to their corresponding times.

3-5

3 Equity Derivatives

3-6

e It defines the time of the levels of the tree by dividing the time span between
valuation and maturity into equally spaced intervals. By specifying the
number of intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods)

where:

® ValuationDate is a scalar date marking the pricing date and first
observation in the tree (location of the root node). You enter ValuationDate
either as a serial date number (generated with datenum) or a date string.

® Maturity is a scalar date marking the maturity of the tree, entered as a
serial date number or a date string.

® NumPeriods is a scalar defining the number of time steps in the tree; for
example, NumPeriods = 10 implies 10 time steps and 11 tree levels (0, 1,
2, ..., 9, 10).

TimeSpec Example Using a Binary Tree
Consider building a CRR tree, with a valuation date of January 1, 2003,

a maturity date of January 1, 2008, and 20 time steps. You specify these
parameters in MATLAB as:

ValuationDate = 'Jan-1-2003';

Maturity = 'Jdan-1-2008';

NumPeriods = 20;

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec =

FinObj: 'BinTimeSpec'
ValuationDate: 731582
Maturity: 733408
NumPeriods: 20
Basis: 0
EndMonthRule: 1
tObs: [1x21 double]

Understanding Equity Trees

dObs: [1x21 double]

Two vector fields in the TimeSpec structure are of particular interest: dObs
and tObs. These two fields represent the observation times and corresponding
dates of all tree levels, with dObs (1) and tObs (1), respectively, representing
the root node (ValuationDate), and dObs(end) and tObs(end) representing
the last tree level (Maturity).

Note There is no relationship between the dates specified for the tree and the
implied tree level times, and the maturities specified in the interest rate term
structure. The rates in RateSpec are interpolated or extrapolated as required
to meet the time distribution of the tree.

Examples of Binary Tree Creation

You can now use the StockSpec and TimeSpec structures described previously
to build an equal probability tree (EQPTree) and a CRR tree (CRRTree). First,
you must define the interest rate term structure. For this example, assume
that the interest rate is fixed at 10% annually between the valuation date of
the tree (January 1, 2003) until its maturity.

ValuationDate = 'Jan-1-2003';

Maturity = 'dan-1-2008';

Rate = 0.1;

RateSpec = intenvset('Rates', Rate, 'StartDates’',
ValuationDate, 'EndDates', Maturity, 'Compounding', -1);

To build a CRRTree, enter:

CRRTree crrtree(StockSpec, RateSpec, TimeSpec)

CRRTree

FinObj: 'BinStockTree'
Method: 'CRR'
StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [1x21 double]

3 Equity Derivatives

3-8

dObs: [1x21 double]
STree: {1x21 cell}
UpProbs: [1x20 double]

To build an EQPTree, enter:

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)

EQPTree

FinObj: 'BinStockTree'
Method: 'EQP'
StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [1x21 double]
dObs: [1x21 double]
STree: {1x21 cell}
UpProbs: [1x20 double]

Building Implied Trinomial Trees

The tree of stock prices is the fundamental unit representing the evolution
of the price of a stock over a given period of time. The MATLAB function
itttree creates an output tree structure along with the information about
the parameters used to create the tree.

The function itttree takes four structures as input arguments:

The stock parameter structure StockSpec

The interest-rate term structure RateSpec

The tree time layout structure TimeSpec

The stock option specification structure StockOptSpec

Calling Sequence for Implied Trinomial Trees
The calling syntax for itttree is:

ITTTree = itttree (StockSpec,RateSpec,TimeSpec,StockOptSpec)

Understanding Equity Trees

® StockSpec is a structure that specifies parameters of the stock whose price
evolution is represented by the tree. This structure, created using the
function stockspec, contains information such as the stock’s original price,
its volatility, and its dividend payment information.

® RateSpec is the interest-rate specification of the initial rate curve. Create
this structure with the function intenvset.

e TimeSpec is the tree time layout specification. Create these structures with
the function itttimespec. This structure contains information regarding
the mapping of relevant dates into the tree structure, plus the number of
time steps used for building the tree.

® StockOptSpec is a structure containing parameters of European stock
options instruments. Create this structure with the function stockoptspec.

Specifying the Stock Structure for Implied Trinomial Trees

The structure StockSpec encapsulates the stock-specific information required
for building the trinomial tree of an individual stock’s price movement.

You generate StockSpec with the function stockspec. This function requires
two input arguments and accepts up to three additional input arguments that
depend on the existence and type of dividend payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType,
DividendAmounts, ExDividendDates)

where:

® Sigma is the decimal annual volatility of the underlying security.
® AssetPrice is the price of the stock at the valuation date.

® DividendType is a string specifying the type of dividend paid by the stock.
Allowed values are cash, constant, or continuous.

¢ DividendAmounts has a value that depends on the specification of
DividendType. For DividendType cash, DividendAmounts is a vector of
cash dividends. For DividendType constant, it is a vector of constant

3-9

3 Equity Derivatives

3-10

annualized dividend yields. For DividendType continuous, it is a scalar
representing a continuously annualized dividend yield.

e ExDividendDates also has a value that depends on the nature of
DividendType. For DividendType cash or constant, ExDividendDates is
vector of dividend dates. For DividendType continuous, ExDividendDates
is ignored.

Stock Structure Example Using an Implied Trinomial Tree

Consider a stock with a price of $100 and an annual volatility of 12%. Assume
that the stock is expected to pay a dividend yield of 6%. You specify these
parameters in MATLAB as:

S0=100;
DividendYield = 0.06;

Sigma=.12;

StockSpec = stockspec(Sigma, So, 'continuous', DividendYield)

StockSpec

FinObj: 'StockSpec'
Sigma: 0.1200
AssetPrice: 100
DividendType: 'continuous'
DividendAmounts: 0.0600
ExDividendDates: []

Specifying the Interest-Rate Term Structure for Implied
Trinomial Trees

The structure RateSpec defines the interest rate environment used when
building the stock price binary tree. “Functions That Model the Interest-Rate
Term Structure” on page 2-24 explains how to create these structures using
the function intenvset, given the interest rates, the starting and ending
dates for each rate, and the compounding value.

Understanding Equity Trees

Specifying the Tree-Time Term Structure for Implied Trinomial
Trees
The TimeSpec structure defines the tree layout of the trinomial tree:

¢ It maps the valuation and maturity dates to their corresponding times.

¢ [t defines the time of the levels of the tree by dividing the time span between
valuation and maturity into equally spaced intervals. By specifying the
number of intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:
TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods)
where:

® ValuationDate is a scalar date marking the pricing date and first
observation in the tree (location of the root node). You enter ValuationDate
either as a serial date number (generated with datenum) or a date string.

® Maturity is a scalar date marking the maturity of the tree, entered as a
serial date number or a date string.

® NumPeriods is a scalar defining the number of time steps in the tree; for
example, NumPeriods = 10 implies 10 time steps and 11 tree levels (0, 1,
2, ..., 9, 10).

TimeSpec Example Using an Implied Trinomial Tree

Consider building an ITT tree, with a valuation date of January 1, 2006, a
maturity date of January 1, 2008, and four time steps. You specify these
parameters in MATLAB as:

ValuationDate = '01-01-2006";
EndDate = '01-01-2008";
NumPeriods = 4;

TimeSpec = itttimespec(ValuationDate, EndDate, NumPeriods)

TimeSpec

FinObj: 'ITTTimeSpec'

3-11

3 Equity Derivatives

3-12

ValuationDate: 732678
Maturity: 733408
NumPeriods: 4
Basis: 0
EndMonthRule: 1
tObs: [0 0.5000 1 1.5000 2]
dObs: [732678 732860 733043 733225 733408]

Two vector fields in the TimeSpec structure are of particular interest: dObs
and tObs. These two fields represent the observation times and corresponding
dates of all tree levels, with dObs (1) and tObs (1), respectively, representing
the root node (ValuationDate), and dObs(end) and tObs(end) representing
the last tree level (Maturity).

Specifying the Option Stock Structure for Implied Trinomial
Trees

The StockOptSpec structure encapsulates the option-stock-specific
information required for building the implied trinomial tree. You generate
StockOptSpec with the function stockoptspec. This function requires five
input arguments. An optional sixth argument InterpMethod, specifying the
interpolation method, can be included. The syntax for calling stockoptspec
is:

[StockOptSpec] = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)
where:

® Optprice is a NINST-by-1 vector of European option prices.

® Strike is a NINST-by-1 vector of strike prices.

® Settle is a scalar date marking the settlement date.

e Maturity is a NINST-by-1 vector of maturity dates.

® OptSpec is a NINST-by-1 cell array of strings 'call' or 'put'.

Option Stock Structure Example Using an Implied Trinomial
Tree

Consider the following data quoted from liquid options in the market with
varying strikes and maturity. You specify these parameters in MATLAB as:

Understanding Equity Trees

Settle = '01/01/06";

Maturity = ['07/01/06";
'07/01/06";
'07/01/06";
'07/01/06";
'01/01/07";
'01/01/07";
'01/01/07";
'01/01/07";
'07/01/07";
'07/01/07";
'07/01/07";
'07/01/07";
'01/01/08";
'01/01/08"';
'01/01/08";
'01/01/08'];

Strike = [113;
101;
100;
88;
128;
112;
100;
78;
144;
112;
100;
69;
162;
112;
100;
611];

OptPrice =[0;
4.807905472659144;
1.306321897011867;
0.048039195057173;

3-13

3 Equity Derivatives

0;
2.310953054191461;
1.421950392866235;
0.020414826276740;

0;
5.091986935627730;
1.346534812295291;
0.005101325584140;

0;
8.047628153217246;
1.219653432150932;
0.001041436654748] ;

OptSpec = { 'call’;
‘call’;
'put’;
'put’;
‘call’;
‘call’;
‘put’;
‘put’;
‘call’;
‘call';
'put’;
'put’;
‘call’;
‘call’;
'put’;
‘put’};

StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)

StockOptSpec

FinObj: 'StockOptSpec'
OptPrice: [16x1 double]

Strike: [16x1 double]

Settle: 732678
Maturity: [16x1 double]

3-14

Understanding Equity Trees

OptSpec: {16x1 cell}
InterpMethod: 'price'’

Note The algorithm for building the ITT tree requires specifying option
prices for all tree nodes. The maturities of those options correspond to those
of the tree levels, and the strike to the prices on the tree nodes. The types of
option are Calls for the nodes above the central nodes, and Puts for those
below and including the central nodes.

Clearly, all these options will not be available in the market, hence making
interpolation and extrapolation necessary to obtain the node option prices.
The degree to which the tree reflects the market will unavoidably be tied to
the results of these interpolations and extrapolations. Keeping in mind that
extrapolation is less accurate than interpolation, and more so the further away
the extrapolated points are from the data points, the function itttree issues
a warning with a list of the options for which extrapolation was necessary.

In some cases, it may be desirable to view a list of ideal option prices to form
an idea of the ranges needed. This can be achieved by calling the function
itttree specifying only the first three input arguments. The second output
argument is a structure array containing the list of ideal options needed.

Creating an Implied Trinomial Tree

You can now use the StockSpec, TimeSpec, and StockOptSpec structures
described in “Stock Structure Example Using an Implied Trinomial Tree” on
page 3-10, “TimeSpec Example Using an Implied Trinomial Tree” on page
3-11, and “Option Stock Structure Example Using an Implied Trinomial Tree”
on page 3-12 to build an implied trinomial tree (ITT). First, you must define
the interest rate term structure. For this example, assume that the interest
rate is fixed at 8% annually between the valuation date of the tree (January
1, 2006) until its maturity.

Rate = 0.08;
ValuationDate = '01-01-2006";
EndDate = '01-01-2008';

RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...
'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1);

3-15

3 Equity Derivatives

To build an ITTTree, enter:

ITTTree = itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)
ITTTree =

FinObj: 'ITStockTree'
StockSpec: [1x1 struct]
StockOptSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.500000000000000 1 1.500000000000000 2]
dObs: [732678 732860 733043 733225 733408]
STree: {1x5 cell}
Probs: {[3x1 double] [3x3 double] [3x5 double] [3x7 double]}

Examining Equity Trees

Financial Derivatives Toolbox software uses equity binary and implied
trinomial trees to represent prices of equity options and of underlying stocks.
At the highest level, these trees have structures wrapped around them. The
structures encapsulate information required to interpret information in the
tree.

To examine an equity binary or trinomial tree, load the data in the MAT-file
deriv.mat into the MATLAB workspace.

load deriv.mat

Display the list of variables loaded from the MAT-file with the whos command.

Name Size Bytes Class Attributes
BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRInstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet 1x1 12434 struct

3-16

Understanding Equity Trees

EQPTree 1x1 5058 struct
HJMInstSet 1x1 15948 struct
HJMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8862 struct
ZerolnstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

Examining a CRRTree

You can examine in some detail the contents of the CRRTree structure
contained in this file.

CRRTree

FinObj: 'BinStockTree'
Method: 'CRR'
StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3 4]
dObs: [731582 731947 732313 732678 733043]
STree: {[100] [110.5171 90.4837] [122.1403 100 81.8731]
[1x4 double] [1x5 double]}
UpProbs: [0.7309 0.7309 0.7309 0.7309]

The Method field of the structure indicates that this is a CRR tree, not an
EQP tree.

The fields StockSpec, TimeSpec and RateSpec hold the original structures
passed into the function crrtree. They contain all the context information
required to interpret the tree data.

The fields tObs and dObs are vectors containing the observation times and
dates, the times and dates of the levels of the tree. In this particular case,
t0bs reveals that the tree has a maturity of 4 years (tObs (end) = 4) and that
it has four time steps (the length of t0bs is five).

3-17

3 Equity Derivatives

The field dObs shows the specific dates for the tree levels, with a granularity
of 1 day. This means that all values in tObs that correspond to a given day
from 00:00 hours to 24:00 hours are mapped to the corresponding value in
dObs. You can use the function datestr to convert these MATLAB serial
dates into their string representations.

The field UpProbs is a vector representing the probabilities for up movements
from any node in each level. This vector has 1 element per tree level. All
nodes for a given level have the same probability of an up movement. In the
specific case being examined, the probability of an up movement is 0.7309 for
all levels, and the probability for a down movement is 0.2691 (1 - 0.7309).

Finally, the field STree contains the actual stock tree. It is represented in
MATLAB as a cell array with each cell array element containing a vector of
prices corresponding to a tree level. The prices are in descending order, that
is, CRRTree.STree{3} (1) represents the topmost element of the third level of
the tree, and CRRTree.STree{3}(end) represents the bottom element of the
same level of the tree.

Examining an ITTTree

You can examine in some detail the contents of the ITTTree structure
contained in this file.

TTTree =

FinObj: 'ITStockTree'
StockSpec: [1x1 struct]
StockOptSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3 4]
dObs: [732678 733043 733408 733773 734139]
STree: {1x5 cell}
Probs: {[3x1 double] [3x3 double] [3x5 double] [3x7 double]}

The fields StockSpec, StockOptSpec, TimeSpec, and RateSpec hold the
original structures passed into the function itttree. They contain all the
context information required to interpret the tree data.

3-18

Understanding Equity Trees

The fields tObs and dObs are vectors containing the observation times and
dates, the times and dates of the levels of the tree. In this particular case,
tObs reveals that the tree has a maturity of 4 years (tObs(end) = 4) and that
it has four time steps (the length of tObs is five).

The field dObs shows the specific dates for the tree levels, with a granularity
of 1 day. This means that all values in tObs that correspond to a given day
from 00:00 hours to 24:00 hours are mapped to the corresponding value in
dObs. You can use the function datestr to convert these MATLAB serial
dates into their string representations.

The field Probs is a vector representing the probabilities for movements from
any node in each level. This vector has three elements per tree node. In the
specific case being examined, at tObs= 1, the probability for an up movement
1s 0.4675, and the probability for a down movement is 0.1934.

Finally, the field STree contains the actual stock tree. It is represented in
MATLAB as a cell array with each cell array element containing a vector of
prices corresponding to a tree level. The prices are in descending order, that
1s, ITTTree.STree{4} (1) represents the top element of the fourth level of
the tree, and ITTTree.STree{4}(end) represents the bottom element of the
same level of the tree.

Isolating a Specific Node for a CRRTree

The function treepath can isolate a specific set of nodes of a binary tree by
specifying the path used to reach the final node. As an example, consider
the nodes touched by starting from the root node, then following a down
movement, then an up movement, and finally a down movement. You use a
vector to specify the path, with 1 corresponding to an up movement and 2
corresponding to a down movement. An up-down-up path is then represented
as [2 1 2]. To obtain the values of all nodes touched by this path, enter:

SvVals

treepath(CRRTree.STree, [2 1 2])

SVals

100.0000
90.4837
100.0000

3-19

3 Equity Derivatives

3-20

90.4837

The first value in the vector SVals corresponds to the root node, and the last
value corresponds to the final node reached by following the path indicated.

Isolating a Specific Node for an ITTTree

The function trintreepath can isolate a specific set of nodes of a trinomial
tree by specifying the path used to reach the final node. As an example,
consider the nodes touched by starting from the root node, then following an
up movement, then a middle movement, and finally a down movement. You
use a vector to specify the path, with 1 corresponding to an up movement,

2 corresponding to a middle movement, and 3 corresponding to a down
movement. An up-down-middle-down path is then represented as [1 3 2 3].
To obtain the values of all nodes touched by this path, enter:

pathSvals trintreepath(ITTTree, [1 3 2 3])

pathSvals

50.0000
66.3448
50.0000
50.0000
37.6819

The first value in the vector pathSVals corresponds to the root node, and
the last value corresponds to the final node reached by following the path
indicated.

Differences Between CRR and EQP Tree Structures

In essence, the structures representing CRR trees and EQP trees are similar.
If you create a CRR or an EQP tree using identical input arguments, only a
few of the tree structure fields differ:

e The Method field has a value of 'CRR' or 'EQP' indicating the method used
to build the structure.

® The prices in the STree cell array have the same structure, but the prices
within the cell array are different.

Understanding Equity Trees

e For EQP, the structure field UpProb always holds a vector with all elements
set to 0.5, while for CRR, these probabilities are calculated based on the
input arguments passed when building the tree.

3-21

3 Equity Derivatives

Understanding Equity Exotic Options

3-22

In this section...

“Introduction” on page 3-22
“Asian Option” on page 3-22
“Barrier Option” on page 3-23
“Basket Option” on page 3-25
“Compound Option” on page 3-26
“Lookback Option” on page 3-27
“Digital Option” on page 3-28
“Rainbow Option” on page 3-29
“Vanilla Option” on page 3-30

Introduction

Financial Derivatives Toolbox software supports eight types of equity exotic
options. Support for all of these equity exotic option types additionally
includes American and European puts and calls.

Asian Option

An Asian option is a path-dependent option with a payoff linked to the
average value of the underlying asset during the life (or some part of the life)
of the option. They are similar to lookback options in that there are two types
of Asian options: fixed (average price option) and floating (average strike
option). Fixed Asian options have a specified strike, while floating Asian
options have a strike equal to the average value of the underlying asset over
the life of the option.

There are four Asian option types, each with its own characteristic payoff
formula:

¢ Fixed call: max(0,S, —X)
¢ Fixed put: max(0,X-3S,,)

Understanding Equity Exotic Options

¢ Floating call: max(0,S-S,)
¢ Floating put: max(0,S, —S)

where:

S,, is the average price of underlying stock found along the particular path
followed to the node.

S is the price of the underlying stock on the node.
X is the strike price (applicable only to fixed Asian options).

S,, is defined using either a geometric or an arithmetic average.

The following functions support Asian options.

Function Purpose

asianbycrr Price Asian options from a CRR binomial tree.

asianbyeqp Price Asian options from an EQP binomial tree.

asianbyitt Price Asian options using an implied trinomial tree
ITT).

instasian Construct an Asian option.

Barrier Option

A barrier option is similar to a vanilla put or call option, but its life either
begins or ends when the price of the underlying stock passes a predetermined
barrier value. There are four types of barrier options.

Up Knock-In

This option becomes effective when the price of the underlying stock passes
above a barrier that is above the initial stock price. Once the barrier has
knocked 1n, it will not knock out even if the price of the underlying instrument
moves below the barrier again.

3-23

3 Equity Derivatives

Up Knock-Out

This option terminates when the price of the underlying stock passes above
a barrier that is above the initial stock price. Once the barrier has knocked
out, it will not knock in even if the price of the underlying instrument moves
below the barrier again.

Down Knock-In

This option becomes effective when the price of the underlying stock passes
below a barrier that is below the initial stock price. Once the barrier has
knocked 1n, it will not knock out even if the price of the underlying instrument
moves above the barrier again.

Down Knock-Out

This option terminates when the price of the underlying stock passes below
a barrier that is below the initial stock price. Once the barrier has knocked
out, it will not knock in even if the price of the underlying instrument moves
above the barrier again.

Rebates

If a barrier option fails to exercise, the seller may pay a rebate to the buyer
of the option. Knock-outs may pay a rebate when they are knocked out, and
knock-ins may pay a rebate if they expire without ever knocking in.

The following functions support barrier options.

Function Purpose

barrierbycrr Price barrier options from a CRR binomial tree.

barrierbyeqp Price barrier options from an EQP binomial tree.

barrierbyitt Price barrier options using an implied trinomial tree
ATT).

instbarrier Construct a barrier option.

3-24

Understanding Equity Exotic Options

Basket Option

A basket option is an option on a portfolio of several underlying equity assets.
Payout for a basket option depends on the cumulative performance of the
collection of the individual assets. A basket option tends to be cheaper than
the corresponding portfolio of plain vanilla options for these reasons:

e [If the basket components correlate negatively, movements in the value
of one component neutralize opposite movements of another component.
Unless all the components correlate perfectly, the basket option is cheaper
than a series of individual options on each of the assets in the basket.

® A basket option minimizes transaction costs because an investor has to
purchase only one option instead of several individual options.

The payoff for a basket option is as follows:

e For a call: max() Wi*Si-K;0)

e For a put: max(y K —Wi*Si;0)

where:

Si is the price of asset i in the basket.

Wi is the quantity of asset i in the basket.

K is the strike price.

Financial Derivatives Toolbox software supports Longstaff-Schwartz and
Nengiu Ju models for pricing basket options. The Longstaff-Schwartz model
supports both European, Bermuda, and American basket options. The Nengiu
Ju model only supports European basket options. If you want to price
either an American or Bermuda basket option, use the functions for the

Longstaff-Schwartz model. To price a European basket option, use either the
functions for the Longstaff-Schwartz model or the Nengiu Ju model.

3-25

3 Equity Derivatives

3-26

Function Purpose

basketbyls Price basket options using the Longstaff-Schwartz
model.

basketsensbyls Calculate price and sensitivities for basket options
using the Longstaff-Schwartz model.

basketbyju Price European basket options using the Nengjiu Ju

approximation model.

basketsensbyju

Calculate European basket options price and
sensitivity using the Nengjiu Ju approximation
model.

basketstockspec

Specify a basket stock structure.

Compound Option

A compound option is basically an option on an option; it gives the holder the
right to buy or sell another option. With a compound option, a vanilla stock
option serves as the underlying instrument. Compound options thus have two
strike prices and two exercise dates.

There are four types of compound options:

e (Call on a call
e Put on a put
e (Call on a put

e Put on a call

Note The payoff formulas for compound options are too complex for this
discussion. If you are interested in the details, consult the paper by Mark
Rubinstein entitled “Double Trouble,” published in Risk 5 (1991).

Consider the third type, a call on a put. It gives the holder the right to buy a
put option. In this case, on the first exercise date, the holder of the compound
option pay the first strike price and receives a put option. The put option

Understanding Equity Exotic Options

gives the holder the right to sell the underlying asset for the second strike
price on the second exercise date.

The following functions support compound options.

Function Purpose

compoundbycrr Price compound options from a CRR binomial tree.

compoundbyeqp Price compound options from an EQP binomial tree.

compoundbyitt Price compound options using an implied trinomial
tree (ITT).

instcompound Construct a compound option.

Lookback Option

A lookback option is a path-dependent option based on the maximum or
minimum value the underlying asset achieves during the entire life of the
option.

Financial Derivatives Toolbox software supports two types of lookback
options: fixed and floating. Fixed lookback options have a specified strike
price, while floating lookback options have a strike price determined by the
asset path. Consequently, there are a total of four lookback option types, each
with its own characteristic payoff formula:

¢ Fixed call: max(0,S, —X)
¢ Fixed put: max(0,X-S)
* Floating call: max(0,S-S,,)

¢ Floating put: max(0,S, —S)

where:

S... is the maximum price of underlying stock found along the particular
path followed to the node.

3-27

3 Equity Derivatives

3-28

S is the minimum price of underlying stock found along the particular path
followed to the node.

S is the price of the underlying stock on the node.

X 1is the strike price (applicable only to fixed lookback options).

The following functions support lookback options.

Function Purpose

lookbackbycrr Price lookback options from a CRR binomial tree.

lookbackbyeqp Price lookback options from an EQP binomaial tree.

lookbackbyitt Price lookback options using an implied trinomial
tree (ITT).

instlookback Construct a lookback option.

Digital Option

A digital option is an option whose payoff is characterized as having only two
potential values: a fixed payout, when the option is in the money or a zero
payout otherwise. This is the case irrespective of how far the asset price at
maturity is above (call) or below (put) the strike.

Digital options are attractive to sellers because they guarantee a known
maximum loss in the event that the option is exercised. This overcomes a
fundamental problem with the vanilla options, where the potential loss is
unlimited. Digital options are attractive to buyers because the option payoff is
a known constant amount, and this amount can be adjusted to provide the
exact quantity of protection required.

Financial Derivatives Toolbox supports four types of digital options:

¢ (Cash-or-nothing option — Pays some fixed amount of cash if the option
expires in the money.

¢ Asset-or-nothing option — Pays the value of the underlying security if the
option expires in the money.

Understanding Equity Exotic Options

® Gap option — One strike decides if the option is in or out of money; another
strike decides the size the size of the payoff.

® Supershare — Pays out a proportion of the assets underlying a portfolio
if the asset lies between a lower and an upper bound at the expiry of the
option.

The following functions calculate pricing and sensitivity for digital options.

Function Purpose

cashbybls Calculate the price of cash-or-nothing digital
options using the Black-Scholes model.

assetbybls Calculate the price of asset-or-nothing digital
options using the Black-Scholes model.

gapbybls Calculate the price of gap digital options
using the Black-Scholes model.

supersharebybls Calculate the price of supershare digital
options using the Black-Scholes model.

cashsensbybls Calculate the price and sensitivities of
cash-or-nothing digital options using the
Black-Scholes model.

assetsensbybls Calculate the price and sensitivities of
asset-or-nothing digital options using the
Black-Scholes model.

gapsensbybls Calculate the price and sensitivities of gap
digital options using the Black-Scholes
model.

supersharesensbybls Calculate the price and sensitivities of

supershare digital options using the
Black-Scholes model.

Rainbow Option

A rainbow option payoff depends on the relative price performance of two or
more assets. A rainbow option gives the holder the right to buy or sell the best
or worst of two securities, or options that pay the best or worst of two assets.

3-29

3 Equity Derivatives

3-30

Rainbow options are popular because of the lower premium cost of the
structure relative to the purchase of two separate options. The lower cost
reflects the fact that the payoff is generally lower than the payoff of the two
separate options.

Financial Derivatives Toolbox supports two types of rainbow options:

e Minimum of two assets — The option holder has the right to buy(sell) one
of two risky assets, whichever one is worth less.

e Maximum of two assets — The option holder has the right to buy(sell) one
of two risky assets, whichever one is worth more.

The following rainbow options speculate/hedge on two equity assets.

Function Purpose

minassetbystulz Calculate the European rainbow option price
on minimum of two risky assets using the
Stulz option pricing model.

minassetsensbystulz Calculate the European rainbow option prices
and sensitivities on minimum of two risky
assets using the Stulz pricing model.

maxassetbystulz Calculate the European rainbow option price
on maximum of two risky assets using the
Stulz option pricing model.

maxassetsensbystulz Calculate the European rainbow option prices
and sensitivities on maximum of two risky
assets using the Stulz pricing model.

Vanilla Option

A vanilla option is a category of options that includes only the most standard
components. A vanilla option has an expiration date and straightforward
strike price. American-style options and European-style options are both
categorized as vanilla options.

The payoff for a vanilla option is as follows:

Understanding Equity Exotic Options

e For a call: max(St-K,0)
¢ For a put: max(K - St,0)

where:
St is the price of the underlying stock at time .
K is the strike price.

The following functions support specifying or pricing a vanilla option.

Function Purpose

optstockbycrr Calculate the price of a European, Bermuda,
or American stock option using a CRR tree.

optstockbyeqp Calculate the price of a European, Bermuda,
or American stock option using an EQP tree.

optstockbyitt Calculate the price of a European, Bermuda,
or American stock option using an ITT tree.

instoptstock Specify a European or Bermuda option.

Bermuda Put and Call Schedule

A Bermuda option resembles a hybrid of American and European options.
You exercise it on predetermined dates only, usually monthly. In Financial
Derivatives Toolbox software, you indicate the relevant information for a
Bermuda option in two input matrices:

¢ Strike — Contains the strike price values for the option.

® ExerciseDates — Contains the schedule when you can exercise the option.

3-31

3 Equity Derivatives

Computing Prices and Sensitivities for Equity Derivatives
Using Trees

In this section...

“Computing Instrument Prices” on page 3-32

“Computing Prices Using CRR” on page 3-34

“Computing Prices Using EQP” on page 3-36

“Computing Prices Using ITT” on page 3-38

“Examining Output from the Pricing Functions” on page 3-40
“Computing Instrument Sensitivities” on page 3-44

“Graphical Representation of CRR, EQP, and ITT Trees” on page 3-48

Computing Instrument Prices
The portfolio pricing functions crrprice, eqpprice, and ittprice calculate
the price of any set of supported instruments based on a binary equity price
tree or an implied trinomial price tree. These functions are capable of pricing
the following instrument types:
® Vanilla stock options

= American and European puts and calls
¢ Exotic options

= Asian

Barrier

Compound

= Lookback

Stock options (Bermuda put and call schedules)
The syntax for calling the function crrprice is:

[Price, PriceTree] = crrprice(CRRTree, InstSet, Options)

3-32

Computing Prices and Sensitivities for Equity Derivatives Using Trees

The syntax for eqpprice is:

[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)
The syntax for ittprice is:

Price = ittprice(ITTTree, ITTInstSet, Options)

These functions require two input arguments: the equity price tree and the
set of instruments, InstSet, and allow a third optional argument.

Required Arguments

CRRTree is a CRR equity price tree created using crrtree. EQPTree is an
equal probability equity price tree created using eqptree. ITTTree is an I'TT
equity price tree created using itttree. See “Building Equity Binary Trees”
on page 3-3 and “Building Implied Trinomial Trees” on page 3-8 to learn
how to create these structures.

InstSet is a structure that represents the set of instruments to be priced
independently using the model. Chapter 1, “Getting Started”, explains how to
create this variable.

Optional Argument

You can enter a third optional argument, Options, used when pricing barrier
options. For more specific information, see Appendix A, “Derivatives Pricing
Options”.

These pricing functions internally classify the instruments and call

the appropriate individual instrument pricing function for each of the
instrument types. The CRR pricing functions are asianbycrr, barrierbycrr,
compoundbycrr, lookbackbycrr, and optstockbycrr. A similar set of
functions exists for EQP and ITT pricing. You can also use these functions
directly to calculate the price of sets of instruments of the same type. See the
reference pages for these individual functions for further information.

3-33

3 Equity Derivatives

Computing Prices Using CRR

Consider the following example, which uses the portfolio and stock price data
in the MAT-file deriv.mat included in the toolbox. Load the data into the
MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded
from the MAT-file.

Name Size Bytes Class Attributes
BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRINnstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet 1x1 12434 struct
EQPTree 1x1 5058 struct
HJMInstSet 1x1 15948 struct
HJMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8862 struct
ZerolInstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

CRRTree and CRRInstSet are the required input arguments to call the
function crrprice

Use instdisp to examine the set of instruments contained in the variable
CRRInstSet.

instdisp(CRRInstSet)

3-34

Computing Prices and Sensitivities for Equity Derivatives Using Trees

Type OptSpec S5trike Settle ExerciselDates AmericanOpt Mame Quantity

OptStock call 105 01-Jan-2003 01-Jan-2005 1 Calll 10

OptStock put 105 01-Jan-2003 01-Jan-2008 a Putl 5

Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec Barrier Rebate Name Ouantity
Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui 102 1] Barrieri 1
Type UdptSpecCOptSpec C5trike CSettle CExerciseDates CAmericanOpt Name Quantity
Compound call ceaaput 5 01-Jan-2003 01-dJan-2005 1 Compoundi 3

Type OptSpec Strike Settle ExerciseDates AmericanOpt MName Quantity

Lookback call 115 01-Jan-2003 01-Jan-2008 a Lookbackl 7

Lookback call 115 01-Jan-2003 01-dan-2007 1] Lookback2 9

Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType AvgPrice AvgDate MName Quantity
Asian put 110 01-Jdan-2003 01-Jan-2008 a arithmetic Nal Nah Asianl 4

Asian put 110 01-Jan-2003 01-Jan-2007 a arithmetic Nal Nah Asian? 6

Note Because of space considerations, the compound option above (Index
4) has been condensed to fit the page. The instdisp command displays all
compound option fields on your computer screen.

The instrument set contains eight instruments:

® Two vanilla options (Callil, Put1)
® One barrier option (Barriert)

®* One compound option (Compound1)

Two lookback options (Lookback1, Lookback?2)

Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument
prices in the price vector returned by crrprice.

Now use crrprice to calculate the price of each instrument in the instrument
set.

Price = crrprice(CRRTree, CRRInstSet)

Price

3-35

3 Equity Derivatives

8.2863
2.5016
12.1272
3.3241
7.6015
11.7772
4.1797
3.4219

Computing Prices Using EQP
Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded
from the MAT-file.

Name Size Bytes Class Attributes
BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRInstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet 1x1 12434 struct
EQPTree 1x1 5058 struct
HJMInstSet 1x1 15948 struct
HJMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8862 struct
ZerolInstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

EQPTree and EQPInstSet are the input arguments required to call the
function eqpprice.

3-36

Computing Prices and Sensitivities for Equity Derivatives Using Trees

Use the command instdisp to examine the set of instruments contained
in the variable EQPInstSet.

instdisp(EQPInstSet)
Type OptSpec Strike Settle ExerciseDates AmericanOpt Mame Quantity
OptStock call 105 01-Jdan-2003 01-Jan-2005 1 Callt 10
OptStock put 105 01-Jdan-2003 01-Jdan-2006 0 Puti 5
Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec Barrier Rebate Name Quantity
Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui 102 4] Barrieri 1
Type UdptSpecCOptSpec CStrike CSettle CExerciseDates CAmericanOpt Name Quantity
Compound call e e put 5 01-Jan-2003 01-Jan-2005 1 Compoundi 3
Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity
Lookback call 115 01-Jan-2003 01-Jan-2008 a Lookbackl 7
Lookback call 115 01-Jan-2003 01-Jdan-2007 4] Lookback2 8
Type 0OptSpec Strike Settle ExerciseDates AmericanOpt AvgType AvgPrice AvgDate MName Quantity
Asian put 110 01-Jan-2003 01-Jan-2008 0 arithmetic MaM Nah Asianl 4
Asian put 110 01-dan-2003 01-Jan-2007 0 arithmetic Mal NaN Asian2 &

Note Because of space considerations, the compound option above (Index
4) has been condensed to fit the page. The instdisp command displays all
compound option fields on your computer screen.

The instrument set contains eight instruments:

® Two vanilla options (Calll, Put1)
¢ One barrier option (Barrierit)

¢ One compound option (Compound1)

Two lookback options (Lookback1, Lookback?2)

¢ Two Asian options (Asiani, Asian2)

Each instrument has a corresponding index that identifies the instrument
prices in the price vector returned by eqpprice.

Now use eqpprice to calculate the price of each instrument in the instrument
set.

3-37

3 Equity Derivatives

3-38

Price

8.4791
2.6375
12.2632
3.5091
8.7941
12.9577
4.7444
3.9178

load deriv.mat

Name

BDTInstSet
BDTTree
BKInstSet
BKTree
CRRInstSet
CRRTree
EQPInstSet
EQPTree
HJMInstSet
HJMTree
HWInstSet
HWTree
ITTInstSet
ITTTree
ZerolInstSet

Computing Prices Using ITT

Consider the following example, which uses the portfolio and stock price data
in the MAT-file deriv.mat included in the toolbox. Load the data into the
MATLAB workspace.

Size

1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1

Price = eqpprice(EQPTree, EQPInstSet)

Bytes

15956
5138
15946
5904
12434
5058
12434
5058
15948
5838
15946
5904
12438
8812
10282

Class

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

Use the MATLAB whos command to display a list of the variables loaded
from the MAT-file.

Attributes

Computing Prices and Sensitivities for Equity Derivatives Using Trees

ZeroRateSpec 1x1 1580 struct

ITTTree and ITTInstSet are the input arguments required to call the
function ittprice. Use the command instdisp to examine the set of
instruments contained in the variable ITTInstSet.

instdisp(ITTInstSet)

optipec Strike Settle ExercizeDates Americanopt Name Quantity
Optitock call 85 01-Jan-2006 31-D oe 1 Calll 10
Optitock put a0 01-Jan-2006 01-Jan-2010 0 Putl 4
optspec Strike Settle ExerciseDates AmericanOpt BarcierSpec Barcier Febate Name Quantity
Barrier call a5 D1l-Jan-2006 3l-Dec-2008 1 ui 115 o Bareierl 1
uoptipec Uitrike Usettle UBxerciseDates UAmericandpt Copt3pec CStrike Clettle cl ebates CAmericandpt Name guantity
Compound call ag 01-Jan-2006 01-Jan-2010 1 put 5 01-Jan-2006 01-JFan-2010 1 Compoundl 2
optspec Strike Ssttle quantity
Lookback call 85 01-Jan-2006
Lookback call B85 01-Jan-2006
optSpec Strike Settle ExerciseDates AmericanOpt Avg AvgPrice AvgDate Kame Quantity
35 01-Jan-2006 01-Jan-2008 o acithmetic NaW HaN Asianl 5
55 01-Jan-2006 01-Jan-2010 o arithmetic Na¥ HaN AsianZ 7

The instrument set contains eight instruments:

Two vanilla options (Callt, Put1)

One barrier option (Barrieri)

® One compound option (Compound1)

Two lookback options (Lookback1, Lookback?2)

Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument
prices in the price vector returned by ittprice.

Now use ittprice to calculate the price of each instrument in the instrument
set.

Price = ittprice(ITTTree, ITTInstSet)

Price

1.650

3-39

3 Equity Derivatives

.68

.407
.229
.542
.184
.205
.607

DWoOOoOWwNO

Examining Output from the Pricing Functions

The prices in the output vector Price correspond to the prices at observation
time zero (tObs = 0), which is defined as the valuation date of the equity
tree. The instrument indexing within Price is the same as the indexing
within InstSet.

In the CRR example, the prices in the Price vector correspond to the
instruments in this order.

InstNames = instget(CRRInstSet, 'FieldName', 'Name')

InstNames

Call1
Put1
Barriert
Compound1
Lookback1
Lookback2
Asiani
Asian2

Consequently, in the Price vector, the fourth element, 3.3241, represents the
price of the fourth instrument (Compound1), and the sixth element, 11.7772,
represents the price of the sixth instrument (Lookback?2).

In the ITT example, the prices in the Price vector correspond to the
instruments in this order.

InstNames = instget(ITTInstSet, 'FieldName', 'Name')

InstNames

3-40

Computing Prices and Sensitivities for Equity Derivatives Using Trees

Calld
Put1
Barrier1
Compound1
Lookback1
Lookback2
Asiani
Asian2

Consequently, in the Price vector, the first element, 1.650, represents the
price of the first instrument (Call1), and the eight element, 6.607, represents
the price of the eighth instrument (Asian2).

Price Tree Output for CRR

If you call a pricing function with two output arguments, for example:

[Price, PriceTree] = crrprice(CRRTree, CRRInstSet)
you generate a price tree structure along with the price information.

This price tree structure PriceTree holds all pricing information.

PriceTree =

FinObj: 'BinPriceTree'’

PTree: {[8x1 double] [8x2 double] [8x3 double] [8x4 double] [8x5 double]}
tObs: [0 1 2 3 4]

dObs: [731582 731947 732313 732678 733043]

The first field of this structure, FinObj, indicates that this structure
represents a price tree. The second field, PTree, is the tree holding the prices
of the instruments in each node of the tree. Finally, the third and fourth
fields, tObs and dObs, represent the observation time and date of each level of
PTree, with tObs using units in terms of compounding periods.

Using the command-line interface, you can directly examine
PriceTree.PTree, the field within the PriceTree structure that contains the
price tree with the price vectors at every state. The first node represents tObs
= 0, corresponding to the valuation date.

3-41

3 Equity Derivatives

PriceTree.PTree{1}
ans =

8.2863

2.5016

12.1272

3.3241

7.6015

11.7772

4.1797

3.4219

With this interface, you can observe the prices for all instruments in the
portfolio at a specific time.

The function eqpprice also returns a price tree that you can examine in
the same way.

Price Tree Output for ITT

If you call a pricing function with two output arguments, for example:

[Price, PriceTree] = ittprice(ITTTree, ITTInstSet)
you generate a price tree structure along with the price information.

This price tree structure PriceTree holds all pricing information.

PriceTree =

FinObj: 'TrinPriceTree'

PTree: {[8x1 double] [8x3 double] [8x5 double] [8x7 double] [8x9 double]}
tObs: [0 1 2 3 4]
dObs: [732678 733043 733408 733773 734139]

The first field of this structure, FinObj, indicates that this structure
represents a trinomial price tree. The second field, PTree is the tree holding
the prices of the instruments in each node of the tree. Finally, the third and
fourth fields, tObs and dObs, represent the observation time and date of each
level of PTree, with tObs using units in terms of compounding periods.

3-42

Computing Prices and Sensitivities for Equity Derivatives Using Trees

Using the command-line interface, you can directly examine
PriceTree.PTree, the field within the PriceTree structure that contains the
price tree with the price vectors at every state. The first node represents tObs
= 0, corresponding to the valuation date.

PriceTree.PTree{1}

.6506
.6832
.4074
.2294
.5426
.1845
.2052
.6074

DWOoOOoOWMNO =

With this interface, you can observe the prices for all instruments in the
portfolio at a specific time.

Prices for Lookback and Asian Options for Equity Trees

Lookback options and Asian options are path dependent, and, as such, there
are no unique prices for any node except the root node. Consequently, the
corresponding values for lookback and Asian options in the price tree are set
to NaN, the only exception being the root node. This becomes apparent if you
examine the prices in the second node (tobs = 1) of the CRR price tree:

PriceTree.PTree{2}
ans =

11.9176 0
0.9508 7.1914
16.4600 2.6672
2.5896 5.0000

NaN NaN
NaN NaN
NaN NaN
NaN NaN

3-43

3 Equity Derivatives

Examining the prices in the second node (tobs = 1) of the ITT price tree
displays:

PriceTree.PTree{2}

ans =

3.9022 0 0

6.3736 13.3743 22.1915

5.6914 0 0

2.7663 3.8594 5.0000
NaN NaN NaN
NaN NaN NaN
NaN NaN NaN
NaN NaN NaN

Computing Instrument Sensitivities

Sensitivities can be reported either as dollar price changes or percentage price
changes. The delta, gamma, and vega sensitivities that the toolbox computes
are dollar sensitivities.

The functions crrsens, eqpsens, and ittsens compute the delta, gamma,
and vega sensitivities of instruments using a stock tree. They also optionally
return the calculated price for each instrument. The sensitivity functions
require the same two input arguments used by the pricing functions (CRRTree
and CRRInstSet for CRR, EQPTree and EQPInstSet for EQP, andITTTree and
ITTInstSet for ITT).

As with the instrument pricing functions, the optional input argument
Options is also allowed. You would include this argument if you want a
sensitivity function to generate a price for a barrier option as one of its
outputs and want to control the method that the toolbox uses to perform
the pricing operation. See Appendix A, “Derivatives Pricing Options” or the
derivset function for more information.

For path-dependent options (lookback and Asian), delta and gamma are
computed by finite differences in calls to crrprice, eqpprice, and ittprice.
For the other options (stock option, barrier, and compound), delta and gamma
are computed from the CRR, EQP, and ITT trees and the corresponding option
price tree. (See Chriss, Neil, Black-Scholes and Beyond, pp. 308-312.)

3-44

Computing Prices and Sensitivities for Equity Derivatives Using Trees

CRR Sensitivities Example
The calling syntax for the sensitivity function is:

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options)

Using the example data in deriv.mat, calculate the sensitivity of the
instruments.

load deriv.mat
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);

You can conveniently examine the sensitivities and the prices by arranging
them into a single matrix.

format bank
All = [Delta, Gamma, Vega, Price]

All =
0.59 0.04 53.45 8.29
-0.31 0.03 67.00 2.50
0.69 0.03 67.00 12.13
-0.12 -0.01 -98.08 3.32
-0.40 -45926.32 88.18 7.60
-0.42 -112143.15 119.19 11.78
0.60 45926.32 49.21 4.18
0.82 112143.15 41.71 3.42

As with the prices, each row of the sensitivity vectors corresponds to

the similarly indexed instrument in CRRInstSet. To view the per-dollar
sensitivities, divide each dollar sensitivity by the corresponding instrument
price.

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]
All =

0.07 0.00 6.45 8.29
-0.12 0.01 26.78 2.50
0.06 0.00 5.53 12.13
-0.04 -0.00 -29.51 3.32

3-45

3 Equity Derivatives

-0.05 -6041.77 11.60 7.60
-0.04 -9522.02 10.12 11.78
0.14 10987.98 11.77 4.18
0.24 32771.92 12.19 3.42

ITT Sensitivities Example
The calling syntax for the sensitivity function is:

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet,
Options)

Using the example data in deriv.mat, calculate the sensitivity of the
instruments.

load deriv.mat
warning('off', 'finderiv:itttree:Extrapolation');
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet);

You can conveniently examine the sensitivities and the prices by arranging
them into a single matrix.

format bank
All = [Delta, Gamma, Vega, Price]

All =
0.24 0.03 19.35 1.65
-0.43 0.02 49.69 10.68
0.35 0.04 12.29 2.41
-0.07 0.00 6.73 3.23
0.63 142945.66 38.90 0.54
0.60 22703.21 68.92 6.18
0.32 -142945.66 18.48 3.21
0.67 -22703.21 17.75 6.61

As with the prices, each row of the sensitivity vectors corresponds to the
similarly indexed instrument in ITTInstSet.

3-46

Computing Prices and Sensitivities for Equity Derivatives Using Trees

Note In this example, the extrapolation warnings are turned off before
calculating the sensitivities to avoid displaying many warnings on the
Command Window as the sensitivities are calculated.

If the extrapolation warnings are turned on
warning('on', 'finderiv:itttree:Extrapolation');

and ittsens is rerun, the extrapolation warnings scroll as the command
executes:

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet)

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.
This makes extrapolation necessary. The list of options outside of the

range of those specified in StockOptSpec are:

Option Type: 'call' Maturity: 01-Jan-2007 Strike=66.3529
Option Type: 'put' Maturity: 01-Jan-2007 Strike=50.0061
Option Type: 'put' Maturity: 01-Jan-2008 Strike=50.0061
Option Type: 'put' Maturity: 31-Dec-2008 Strike=50.0061
Option Type: 'call' Maturity: 01-Jan-2010 Strike=155.0141
Option Type: 'put' Maturity: 01-Jan-2010 Strike=50.006
> In itttree>InterpOptPrices at 675

In itttree at 277

In stocktreesens>stocktreedeltagamma_PD at 127

In stocktreesens at 83

In ittsens at 81

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.
This made extrapolation necessary. Below is a list of the options that were outside of the

range of those specified in StockOptSpec.

Option Type: 'call' Maturity: 01-Jan-2007 Strike=66.3367
Option Type: 'put' Maturity: 01-Jan-2007 Strike=37.6773
Option Type: 'call' Maturity: 01-Jan-2008 Strike=66.3367
Option Type: 'put' Maturity: 01-Jan-2008 Strike=28.3951
Option Type: 'call' Maturity: 31-Dec-2008 Strike=66.3367
Option Type: 'call' Maturity: 01-Jan-2010 Strike=66.3367

3-47

3 Equity Derivatives

3-48

Option Type: 'put' Maturity: 01-Jan-2010 Strike=16.1276

> In itttree>InterpOptPrices at 675
In itttree at 277
In stocktreesens>stocktreedeltagamma_PD at 131
In stocktreesens at 83

In ittsens at 81

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.
This made extrapolation necessary. Below is a list of the options that were outside of the

range of those specified in StockOptSpec.

Option Type: 'call' Maturity: 01-Jan-2007 Strike=67.2897
Option Type: 'put' Maturity: 01-Jan-2007 Strike=37.1528
Option Type: 'put' Maturity: 01-Jan-2008 Strike=27.6066
Option Type: 'put' Maturity: 31-Dec-2008 Strike=20.5132
Option Type: 'call' Maturity: 01-Jan-2010 Strike=164.0157
Option Type: 'put' Maturity: 01-Jan-2010 Strike=15.2424

> In itttree>InterpOptPrices at 675
In itttree at 277
In stocktreesens>stocktreevega at 191
In stocktreesens at 92

In ittsens at 81

These warnings are a consequence of having to extrapolate to find the option
price of the tree nodes. In this example, the set of inputs options was too
narrow for the shift in the tree nodes introduced by the disturbance used to
calculate the sensitivities. As a consequence extrapolation for some of the
nodes was needed. Since the input data is quite close the extrapolated data,
the error introduced by extrapolation is fairly low.

Graphical Representation of CRR, EQP, and ITT Trees

You can use the function treeviewer to display a graphical representation
of a tree, allowing you to examine interactively the prices and rates on the
nodes of the tree until maturity. The graphical representations of CRR and
EQP trees are equivalent to Black-Derman-Toy (BDT) trees, given that they
are all binary recombining trees. The graphical representations of ITT trees
are equivalent to Hull-White (HW) trees, given that they are all trinomial

Computing Prices and Sensitivities for Equity Derivatives Using Trees

recombining trees. See “Graphical Representation of Trees” on page 2-75 for
an overview on the use of treeviewer with CRR trees, EQP trees, and ITT

trees and their corresponding option price trees. Follow the instructions for
BDT trees.

3-49

3 Equity Derivatives

Equity Derivatives Using Closed-Form Solutions

3-50

In this section...

“Introduction” on page 3-50

“Computing Prices and Sensitivities Using the Black-Scholes Model” on
page 3-54

“Computing Prices and Sensitivities Using the Black Model” on page 3-56

“Computing Prices and Sensitivities Using the Roll-Geske-Whaley Model”
on page 3-57

“Computing Prices and Sensitivities Using the Bjerksund-Stensland Model”
on page 3-58

Introduction

Financial Derivatives Toolbox software supports four types of closed-form
solutions and analytical approximations to calculate price and sensitivities
(greeks) of vanilla options:

¢ Black-Scholes model

® Black model

® Roll-Geske-Whaley model

® Bjerksund-Stensland 2002 model

Black-Scholes Model

The Black-Scholes model is one of the most commonly used models to price
European calls and puts. It serves as a basis for many closed-form solutions
used for pricing options. The standard Black-Scholes model is based on the
following assumptions:

¢ There are no dividends paid during the life of the option.

® The option can only be exercised at maturity.

® The markets operate under a Markov process in continuous time.

¢ No commissions are paid.

Equity Derivatives Using Closed-Form Solutions

e The risk-free interest rate is known and constant.

® Returns on the underlying stocks are log-normally distributed.

Note The Black-Scholes model implemented in Financial Derivatives
Toolbox software allows dividends. The following three dividend methods
are supported:

e (Cash dividend

¢ Continuous dividend yield

® Constant dividend yield

However, not all Black-Scholes closed-form pricing functions support all three

dividend methods. For more information on specifying the dividend methods,
see stockspec.

Closed-form solutions based on a Black-Scholes model support the following
tasks.

Task Function

Price European options with different optstockbybls
dividends using the Black-Scholes option
pricing model.

Calculate European option prices and optstocksensbybls
sensitivities using the Black-Scholes option
pricing model.

Calculate implied volatility on European impvbybls
options using the Black-Scholes option
pricing model.

Price European simple chooser options chooserbybls
using Black-Scholes model.

For an example using the Black-Scholes model, see “Computing Prices and
Sensitivities Using the Black-Scholes Model” on page 3-54.

3-51

3 Equity Derivatives

3-52

Black Model

Use the Black model for pricing European options on physical commodities,
forwards or futures. The Black model supported by Financial Derivatives
Toolbox software is a special case of the Black-Scholes model. The Black model
uses a forward price as an underlier in place of a spot price. The assumption
is that the forward price at maturity of the option is log-normally distributed.

Closed-form solutions for a Black model support the following tasks.

Task Function

Price European options on futures using the | optstockbyblk
Black option pricing model.

Calculate European option prices and optstocksensbyblk
sensitivities on futures using the Black
option pricing model.

Calculate implied volatility for European impvbyblk
options using the Black option pricing
model.

For an example using the Black model, see “Computing Prices and
Sensitivities Using the Black Model” on page 3-56.

Roll-Geske-Whaley Model

Use the Roll-Geske-Whaley approximation method to price American call
options paying a single cash dividend. This model is based on the modification
of the observed stock price for the present value of the dividend and also
supports a compound option to account for the possibility of early exercise.
The Roll-Geske-Whaley model has drawbacks due to an escrowed dividend
price approach which may lead to arbitrage. For further explanation, see
Options, Futures, and Other Derivatives by John Hull.

Closed-form solutions for a Roll-Geske-Whaley model support the following
tasks.

Equity Derivatives Using Closed-Form Solutions

Task Function

Price American call options with a single optstockbyrgw
cash dividend using the Roll-Geske-Whaley
option pricing model.

Calculate American call prices and optstocksensbyrgw
sensitivities using the Roll-Geske-Whaley
option pricing model.

Calculate implied volatility for American impvbyrgw
call options using the Roll-Geske-Whaley
option pricing model.

For an example using the Roll-Geske-Whaley model, see “Computing Prices
and Sensitivities Using the Roll-Geske-Whaley Model” on page 3-57.

Bjerksund-Stensland 2002 Model

Use the Bjerksund-Stensland 2002 model for pricing American puts and
calls with continuous dividend yield. This model works by dividing the

time to maturity of the option in two separate parts, each with its own flat
exercise boundary (trigger price). The Bjerksund-Stensland 2002 method is a
generalization of the Bjerksund and Stensland 1993 method and is considered
to be computationally efficient . For further explanation, see Closed Form
Valuation of American Options by Bjerksund and Stensland.

Closed-form solutions for a Bjerksund-Stensland 2002 model support the
following tasks.

Task Function

Price American options with optstockbybjs
continuous dividend yield using the
Bjerksund-Stensland 2002 option pricing
model.

Calculate American options prices and optstocksensbybjs
sensitivities using the Bjerksund-Stensland
2002 option pricing model.

3-53

3 Equity Derivatives

3-54

Task

Function

Calculate implied volatility for American
options using the Bjerksund-Stensland 2002
option pricing model.

impvbybjs

For an example using the Bjerksund-Stensland 2002 model, see “Computing
Prices and Sensitivities Using the Bjerksund-Stensland Model” on page 3-58.

Computing Prices and Sensitivities Using the

Black-Scholes Model

Consider a European stock option with an exercise price of $40 on January

1, 2008 that expires on July 1, 2008. Assume the underlying stock pays
dividends of $0.50 on March 1 and June 1. The stock is trading at $40 and
has a volatility of 30% per annum. The risk-free rate is 4% per annum. Using
this data, calculate the price of a call and a put option on the stock using the

Black-Scholes option pricing model:

Strike = 40;
AssetPrice = 40;
Sigma = .3;

Rates = 0.04;
Settle = 'dan-01-08"';
Maturity = 'Jul-01-08';

Div1
Div2

‘March-01-2008";
'Jun-01-2008";

Create RateSpec and StockSpec:

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...

Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, 0.50,{Div1,Div2});

Define two options, one call and one put:
OptSpec = {'call'; 'put'};

Calculate the price of the European options:

Equity Derivatives Using Closed-Form Solutions

Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price

3.2063
3.4027

The first element of the Price vector represents the price of the call ($3.21);
the second is the price of the put ($3.40). Use the function optstocksensbybls
to compute six sensitivities for the Black-Scholes model: delta, gamma, vega,
lambda, rho, and theta and the price of the option.

The selection of output parameters and their order is determined by the
optional input parameter OutSpec. This parameter is a cell array of strings,
each one specifying a desired output parameter. The order in which these
output parameters are returned by the function is the same as the order

of the strings contained in OutSpec.

As an example, consider the same options as the previous example. To

calculate their Delta, Rho, Price, and Gamma, build the cell array OutSpec as
follows:

OutSpec = {'delta', 'rho', 'price', 'gamma'};

[Delta, Rho, Price, Gamma] =optstocksensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)

Delta =
0.5328

-0.4672

Rho

8.7902
-10.8138

Price =

3-55

3 Equity Derivatives

3-56

3.2063
3.4027

Gamma =

0.0480
0.0480

Computing Prices and Sensitivities Using the Black
Model

Consider two European call options on a futures contract with exercise prices
of $20 and $25 that expire on September 1, 2008. Assume that on May 1, 2008

the contract is trading at $20 and has a volatility of 35% per annum. The

risk-free rate is 4% per annum. Using this data, calculate the price of the call

futures options using the Black model:
Strike = [20; 25];
AssetPrice = 20;
Sigma = .35;
Rates = 0.04;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';
Create RateSpec and StockSpec:

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(Sigma, AssetPrice);
Define the call option:
OptSpec = {'call'};

Calculate price and all sensitivities of the European futures options:

OutSpec = {'All'}

Equity Derivatives Using Closed-Form Solutions

[Delta, Gamma, Vega, Lambda, Rho, Theta, Price] = optstocksensbyblk(RateSpec,...
StockSpec, Settle, Maturity, OptSpec, Strike, 'OutSpec', OutSpec);

Price =

1.5903
0.3037

The first element of the Price vector represents the price of the call with
an exercise price of $20 ($1.59); the second is the price of the call with an
exercise price of $25 ($2.89).

The function impvbyblk is used to compute the implied volatility using the
Black option pricing model. Assuming that the previous European call futures
are trading at $1.5903 and $0.3037, you can calculate their implied volatility:

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, Price);

As expected, you get volatilities of 35%. If the call futures were trading at
$1.50 and $0.50 in the market, the implied volatility would be 33% and 42%:

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, [1.50;0.5])

Volatility =

0.3301
0.4148

Computing Prices and Sensitivities Using the
Roll-Geske-Whaley Model

Consider two American call options, with exercise prices of $110 and $100 on
June 1, 2008, that expire on June 1, 2009. Assume the underlying stock pays
dividends of $0.001 on December 1, 2008. The stock is trading at $80 and has
a volatility of 20% per annum. The risk-free rate is 6% per annum. Using this
data, calculate the price of the American calls using the Roll-Geske-Whaley
option pricing model:

AssetPrice = 80;

3-57

3 Equity Derivatives

3-58

Settle = 'Jun-01-2008';
Maturity = 'Jdun-01-2009';
Strike = [110; 100];

Rate = 0.06;
Sigma 0.2;

DivAmount = 0.001;
DivDate = 'Dec-01-2008';

Create RateSpec and StockSpec:

StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

Calculate the call prices:

Price = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike)
Price =

0.8398
2.0236

The first element of the Price vector represents the price of the call with
an exercise price of $110 ($0.84); the second is the price of the call with an
exercise price of $100 ($2.02).

Computing Prices and Sensitivities Using the
Bjerksund-Stensland Model

Consider four American stock options (two calls and two puts) with an
exercise price of $100 that expire on July 1, 2008. Assume the underlying
stock pays a continuous dividend yield of 4% as of January 1, 2008. The stock
has a volatility of 20% per annum and the risk-free rate is 8% per annum.
Using this data, calculate the price of the American calls and puts assuming
the following current prices of the stock: $80, $90 (for the calls) and $100
and $110 (for the puts):

Equity Derivatives Using Closed-Form Solutions

Settle = 'Jdan-1-2008';

Maturity = 'Jul-1-2008';

Strike = 100;

AssetPrice = [80; 90; 100; 110];
DivYield = 0.04;

Rate = 0.08;

Sigma = 0.20;

Create RateSpec and StockSpec:

StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);

RateSpec = intenvset('ValuationDate', Settle,
'EndDates', Maturity,

'StartDates', Settle,...

'Rates', Rate, 'Compounding', -1);

Define the option type:

OptSpec = {'call';

‘call'; 'put'; 'put'};

Compute the option prices:

Price =

Price

- » N O

optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

.4144
.1804
.7253
.7164

The first two elements of the Price vector represent the price of the calls
($0.41 and $2.18), the last two elements represent the price of the put
options ($4.72 and $1.72). Use the function optstocksensbybjs to compute
six sensitivities for the Bjerksund-Stensland model: delta, gamma, vega,
lambda, rho, and theta and the price of the option. The selection of output
parameters and their order is determined by the optional input parameter
OutSpec. This parameter is a cell array of strings, each one specifying a
desired output parameter. The order in which these output parameters are
returned by the function is the same as the order of the strings contained in
OutSpec. As an example, consider the same options as the previous example.

3-59

3 Equity Derivatives

To calculate their delta, gamma, and price, build the cell array OutSpec as
follows:

OutSpec = {'delta', 'gamma', 'price'};
The outputs of optstocksensbybjs will be in the same order as in OutSpec.

[Delta ,Gamma, Price]= optstocksensbybjs(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)

Delta =

.0843
.2912
.4803
.2261

o O o o

Gamma

.0136
.0267
.0304
.0217

o o o o

Price

.4144
.1804
.7253
.7164

- b~ N O

3-60

Hedging Portfolios

¢ “Hedging” on page 4-2

¢ “Hedging Functions” on page 4-3

® “Specifying Constraints with ConSet” on page 4-16
¢ “Hedging with Constrained Portfolios” on page 4-21

4 Hedging Portfolios

Hedging

Hedging is an important consideration in modern finance. Whether or not to
hedge, how much portfolio insurance is adequate, and how often to rebalance
a portfolio are important considerations for traders, portfolio managers, and
financial institutions alike.

If there were no transaction costs, financial professionals would prefer to
rebalance portfolios continually, thereby minimizing exposure to market
movements. However, in practice, the transaction costs associated with
frequent portfolio rebalancing may be expensive. Therefore, traders and
portfolio managers must carefully assess the cost required to achieve a
particular portfolio sensitivity (for example, maintaining delta, gamma,
and vega neutrality). Thus, the hedging problem involves the fundamental
tradeoff between portfolio insurance and the cost of such insurance coverage.

4-2

Hedging Functions

Hedging Functions

In this section...

“Introduction” on page 4-3
“Hedging with hedgeopt” on page 4-4
“Self-Financing Hedges with hedgeslf’ on page 4-12

Introduction

Financial Derivatives Toolbox software offers two functions for assessing the
fundamental hedging tradeoff, hedgeopt and hedgeslf.

The first function, hedgeopt, addresses the most general hedging problem. It
allocates an optimal hedge to satisfy either of two goals:

® Minimize the cost of hedging a portfolio given a set of target sensitivities.

e Minimize portfolio sensitivities for a given set of maximum target costs.

hedgeopt allows investors to modify portfolio allocations among instruments
according to either of the goals. The problem is cast as a constrained linear
least-squares problem. For additional information about hedgeopt, see
“Hedging with hedgeopt” on page 4-4.

The second function, hedgeslf, attempts to allocate a self-financing hedge
among a portfolio of instruments. In particular, hedgeslf attempts to
maintain a constant portfolio value consistent with reduced portfolio
sensitivities (that is, the rebalanced portfolio is hedged against market moves
and is closest to being self-financing). If hedges1f cannot find a self-financing
hedge, it rebalances the portfolio to minimize overall portfolio sensitivities.
For additional information on hedgeslf, see “Self-Financing Hedges with
hedgeslf” on page 4-12.

The examples in this section consider the delta, gamma, and vega sensitivity
measures. In this toolbox, when you work with interest-rate derivatives, delta
is the price sensitivity measure of shifts in the forward yield curve, gamma is
the delta sensitivity measure of shifts in the forward yield curve, and vega is
the price sensitivity measure of shifts in the volatility process. See bdtsens

4-3

4 Hedging Portfolios

4-4

or hjmsens for details on the computation of sensitivities for interest-rate
derivatives.

For equity exotic options, the underlying instrument is the stock price instead
of the forward yield curve. Consequently, delta now represents the price
sensitivity measure of shifts in the stock price, gamma is the delta sensitivity
measure of shifts in the stock price, and vega is the price sensitivity measure
of shifts in the volatility of the stock. See crrsens, eqpsens, or ittsens for
details on the computation of sensitivities for equity derivatives.

For examples showing the computation of sensitivities for interest-rate
based derivatives, see “Computing Instrument Sensitivities” on page 2-33.
Likewise, for examples showing the computation of sensitivities for equity
exotic options, see “Computing Instrument Sensitivities” on page 3-44.

Note The delta, gamma, and vega sensitivities that the toolbox calculates
are dollar sensitivities.

Hedging with hedgeopt

Note The numerical results in this section are displayed in the MATLAB
bank format. Although the calculations are performed in floating-point double
precision, only two decimal places are displayed.

To illustrate the hedging facility, consider the portfolio HIMInstSet obtained
from the example file deriv.mat. The portfolio consists of eight instruments:
two bonds, one bond option, one fixed-rate note, one floating-rate note, one
cap, one floor, and one swap.

Both hedging functions require some common inputs, including the current
portfolio holdings (allocations), and a matrix of instrument sensitivities. To

create these inputs, load the example portfolio into memory

load deriv.mat;

compute price and sensitivities

Hedging Functions

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

and extract the current portfolio holdings.

Holdings = instget(HJMInstSet, 'FieldName', 'Quantity');

For convenience place the delta, gamma, and vega sensitivity measures into a
matrix of sensitivities.

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different
instrument in the portfolio, and each column with a different sensitivity
measure.

To summarize the portfolio information

disp([Price Holdings Sensitivities])

98.72 100.00 -272.65 1029.90 0.00
97.53 50.00 -347.43 1622.69 -0.04
0.05 -50.00 -8.08 643.40 34.07
98.72 80.00 -272.65 1029.90 0.00
100.55 8.00 -1.04 3.31 0
6.28 30.00 294.97 6852.56 93.69
0.05 40.00 -47.16 8459.99 93.69
3.69 10.00 -282.05 1059.68 0.00

The first column above is the dollar unit price of each instrument, the
second is the holdings of each instrument (the quantity held or the number
of contracts), and the third, fourth, and fifth columns are the dollar delta,
gamma, and vega sensitivities, respectively.

The current portfolio sensitivities are a weighted average of the instruments
in the portfolio.

TargetSens = Holdings' * Sensitivities

TargetSens =

4-5

4 Hedging Portfolios

4-6

-61910.

22

788946. 21 4852.91

Maintaining Existing Allocations

To illustrate using hedgeopt, suppose that you want to maintain your
existing portfolio. The first form of hedgeopt minimizes the cost of hedging
a portfolio given a set of target sensitivities. If you want to maintain your
existing portfolio composition and exposure, you should be able to do so
without spending any money. To verify this, set the target sensitivities to the

current sensitivities.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [],

Sens

Cost

Quantity' =

100.
50.
-50.
80.
8.
30.
40.
10.

61910.

22

00
00
00
00
00
00
00
00

[1, TargetSens)

788946. 21 4852.91

Portfolio composition and sensitivities are unchanged, and the cost associated
with doing nothing is zero. The cost is defined as the change in portfolio
value. This number cannot be less than zero because the rebalancing cost

is defined as a nonnegative number.

Hedging Functions

If ValueO and Value1l represent the portfolio value before and after
rebalancing, respectively, the zero cost can also be verified by comparing
the portfolio values.

Value0 = Holdings' * Price

ValueO
23674.62

Valuel = Quantity * Price

Valuei

23674.62

Partially Hedged Portfolio

Building on the example in “Maintaining Existing Allocations” on page

4-6, suppose you want to know the cost to achieve an overall portfolio
dollar sensitivity of [-23000 -3300 3000], while allowing trading only in
instruments 2, 3, and 6 (holding the positions of instruments 1, 4, 5, 7, and 8
fixed). To find the cost, first set the target portfolio dollar sensitivity.

TargetSens = [-23000 -3300 3000];
Then, specify the instruments to be fixed.
FixedInd = [1 4 5 7 8];
Finally, call hedgeopt

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);

and again examine the results.

Sens =

-23000.00 -3300.00 3000.00

4-7

4 Hedging Portfolios

Cost =
19174.02
Quantity' =

100.00
-141.03
137.26
80.00
8.00
-57.96
40.00
10.00

Recompute Value1, the portfolio value after rebalancing.

Valuei

Quantity * Price

Valuei

4500.60

As expected, the cost, $19174.02, is the difference between ValueO and
Valuel, $23674.62 — $4500.60. Only the positions in instruments 2, 3, and
6 have been changed.

Fully Hedged Portfolio

The example in “Partially Hedged Portfolio” on page 4-7 illustrates a partial
hedge, but perhaps the most interesting case involves the cost associated with
a fully hedged portfolio (simultaneous delta, gamma, and vega neutrality).

In this case, set the target sensitivity to a row vector of Os and call hedgeopt
again. The following example uses data from “Hedging with hedgeopt” on
page 4-4.

TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,
Holdings, FixedInd, [], [], TargetSens);

Hedging Functions

Examining the outputs reveals that you have obtained a fully hedged portfolio

Sens =
-0.00 -0.00 -0.00

but at an expense of over $20,000.

Cost =
23055.90

The positions required to achieve a fully hedged portfolio
Quantity' =

100.00
-182.36
-19.55
80.00
8.00
-32.97
40.00
10.00

result in the new portfolio value

Valuel = Quantity * Price

Value1l

618.72

Minimizing Porifolio Sensitivities

The examples in “Fully Hedged Portfolio” on page 4-8 illustrate how to use
hedgeopt to determine the minimum cost of hedging a portfolio given a set
of target sensitivities. In these examples, portfolio target sensitivities are
treated as equality constraints during the optimization process. You tell
hedgeopt what sensitivities you want, and it tells you what it will cost to
get those sensitivities.

4-9

4 Hedging Portfolios

4-10

A related problem involves minimizing portfolio sensitivities for a given set of
maximum target costs. For this goal, the target costs are treated as inequality
constraints during the optimization process. You tell hedgeopt the most

you are willing spend to insulate your portfolio, and it tells you the smallest
portfolio sensitivities you can get for your money.

To 1llustrate this use of hedgeopt, compute the portfolio dollar sensitivities
along the entire cost frontier. From the previous examples, you know that
spending nothing replicates the existing portfolio, while spending $23,055.90
completely hedges the portfolio.

Assume, for example, you are willing to spend as much as $50,000, and
want to see what portfolio sensitivities will result along the cost frontier.
Assume that the same instruments are held fixed, and that the cost frontier is
evaluated from $0 to $50,000 at increments of $1000.

MaxCost = [0:1000:50000];

Now, call hedgeopt.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,
Holdings, FixedInd, [], MaxCost);

With this data, you can plot the required hedging cost versus the funds
available (the amount you are willing to spend)

plot(MaxCost/1000, Cost/1000, 'red'), grid
xlabel('Funds Available for Rebalancing ($1000''s)"')
ylabel('Actual Rebalancing Cost ($1000''s)"')

title ('Rebalancing Cost Profile')

Hedging Functions

Insda/ "ar/|®2p0

Rebalancing Cost Profile
)

— — I
= m [}
T T T
- 1 :
L H .
- 1 :

1 1 1

Actual Rebalancing Cost ($1000's)

m
T
K
o
K
|

0 5 10 15 20 25 30 35 40 45 50
Funds Available for Rebalancing ($1000's)

Rebalancing Cost Profile

and the portfolio dollar sensitivities versus the funds available.

figure

plot(MaxCost/1000, Sens(:,1), '-red")

hold('on")

plot(MaxCost/1000, Sens(:,2), '-.black')

plot(MaxCost/1000, Sens(:,3), '--blue')

grid

xlabel('Funds Available for Rebalancing ($1000''s)"')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')

legend('Delta', 'Gamma', 'Vega', 0)

4-11

4 Hedging Portfolios

Insda/ "A A/ @20

w10 Partfalio Sensitivities Profile

Delta, Garnma, and Yega Portfolio Dollar Sensitivities

1
0 5 10 15 20 25 30 35 40 45 50
Funds Available for Rebalancing ($1000's)

Funds Available for Rebalancing

Self-Financing Hedges with hedgeslf

The figures Rebalancing Cost Profile on page 4-11 and Funds Available for
Rebalancing on page 4-12 indicate that there is no benefit because the funds
available for hedging exceed $23,055.90, the point of maximum expense
required to obtain simultaneous delta, gamma, and vega neutrality. You can
also find this point of delta, gamma, and vega neutrality using hedges1f.

[Sens, Valuel, Quantity] = hedgeslf(Sensitivities, Price,...
Holdings, FixedInd);

Sens =
-0.00
-0.00
-0.00
Valuel =
618.72

4-12

Hedging Functions

Quantity =

100.
-182.
-19.
80.
8.
-32.
40.
10.

00
36
55
00
00
97
00
00

Similar to hedgeopt, hedgeslf returns the portfolio dollar sensitivities and
instrument quantities (the rebalanced holdings). However, in contrast, the
second output parameter of hedgeslf is the value of the rebalanced portfolio,

from which you can calculate the rebalancing cost by subtraction.

ValueO - Valuefi

ans =

23055.

90

In this example, the portfolio is clearly not self-financing, so hedgeslf finds

the best possible solution required to obtain zero sensitivities.

There is, in fact, a third calling syntax available for hedgeopt directly
related to the results shown above for hedgeslf. Suppose, instead of directly
specifying the funds available for rebalancing (the most money you are
willing to spend), you want to simply specify the number of points along the
cost frontier. This call to hedgeopt samples the cost frontier at 10 equally
spaced points between the point of minimum cost (and potentially maximum

exposure) and the point of minimum exposure (and maximum cost).

[Sens, Cost, Quantity]
Holdings, FixedInd,

Sens =

-32784.
-29141.

46
74

-49694.33
-44172.74

hedgeopt(Sensitivities, Price,...

4-13

4 Hedging Portfolios

-25499.02 1735.87 -38651.14
-21856.30 1487.89 -33129.55
-18213.59 1239.91 -27607.96
-14570.87 991.93 -22086.37
-10928.15 743.94 -16564.78
-7285.43 495.96 -11043.18
-3642.72 247.98 -5521.59

Cost =

0.00
2561.77
5123.53
7685.30
10247.07
12808.83
15370.60
17932.37
20494 .14
23055.90

Now plot this data.

figure

plot(Cost/1000, Sens(:,1), '-red')
hold('on')

plot(Cost/1000, Sens(:,2), '-.black')
plot(Cost/1000, Sens(:,3), '--blue')
grid

xlabel('Rebalancing Cost ($1000''s)"')

ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')

legend('Delta', 'Gamma', 'Vega', 0)

4-14

Hedging Functions

Ded&s "A A/ | @220

w10 Paortfolio Sensitivities Prafile
1 T T T T

Delta, Gamma, and Yega Portfolio Dollar Sensitivities

H H — Delta
- — - Gamma
< s s — Veys
5 | | | I
0 5 10 15 20 25

Rebalancing Cost ($1000's)

Rebalancing Cost

In this calling form, hedgeopt calls hedgeslf internally to determine the
maximum cost needed to minimize the portfolio sensitivities ($23,055.90), and
evenly samples the cost frontier between $0 and $23,055.90.

Note that both hedgeopt and hedgesl1f cast the optimization problem as a
constrained linear least squares problem. Depending on the instruments
and constraints, neither function is guaranteed to converge to a solution. In
some cases, the problem space may be unbounded, and additional instrument
equality constraints, or user-specified constraints, may be necessary for
convergence. See “Hedging with Constrained Portfolios” on page 4-21 for
additional information.

4-15

4 Hedging Portfolios

Specifying Constraints with ConSet

In this section...

“Introduction” on page 4-16
“Setting Constraints” on page 4-16
“Portfolio Rebalancing” on page 4-19

Introduction

Both hedgeopt and hedgeslf accept an optional input argument, ConSet,
that allows you to specify a set of linear inequality constraints for instruments
in your portfolio. The examples in this section are brief. For additional
information regarding portfolio constraint specifications, refer to “Analyzing
Portfolios” in the Financial Toolbox documentation.

Setting Constraints

For the first example of setting constraints, return to the fully hedged portfolio
example that used hedgeopt to determine the minimum cost of obtaining
simultaneous delta, gamma, and vega neutrality (target sensitivities all 0).
Recall that when hedgeopt computes the cost of rebalancing a portfolio, the
input target sensitivities you specify are treated as equality constraints during
the optimization process. The situation is reproduced next for convenience.

TargetSens = [0 0 0];

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);

The outputs provide a fully hedged portfolio

Sens =
-0.00 -0.00 -0.00

at an expense of over $23,000.

Cost =
23055.90

4-16

Specifying Constraints with ConSet

The positions required to achieve this fully hedged portfolio are
Quantity' =

100.00
-182.36
-19.55
80.00
8.00
-32.97
40.00
10.00

Suppose now that you want to place some upper and lower bounds on the
individual instruments in your portfolio. You can specify these constraints,
along with a variety of general linear inequality constraints, with Financial
Toolbox function portcons.

As an example, assume that, in addition to holding instruments 1, 4, 5, 7, and
8 fixed as before, you want to bound the position of all instruments to within
+/- 180 contracts (for each instrument, you cannot short or long more than
180 contracts). Applying these constraints disallows the current position in
the second instrument (short 182.36). All other instruments are currently
within the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper
bounds vectors and then calling portcons.

LowerBounds = [-180 -180 -180 -180 -180 -180 -180 -180];
UpperBounds = [180 180 180 180 180 180 180 180];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, call hedgeopt with ConSet as the last input.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens, ConSet);

Examine the outputs and see that they are all set to NaN, indicating that the
problem, given the constraints, is not solvable. Intuitively, the results mean

4-17

4 Hedging Portfolios

that you cannot obtain simultaneous delta, gamma, and vega neutrality with
these constraints at any price.

To see how close you can get to portfolio neutrality with these constraints,
call hedges1f.

[Sens, Valuel, Quantity] = hedgeslf(Sensitivities, Price,...
Holdings, FixedInd, ConSet);

Sens =

-352.43
21.99
-498.77

Valuel =
855.10
Quantity =

100.00
-180.00
-37.22
80.00
8.00
-31.86
40.00
10.00

hedgeslf enforces the lower bound for the second instrument, but the
sensitivity is far from neutral. The cost to obtain this portfolio is

ValueO - Valuet
ans =

22819.52

4-18

Specifying Constraints with ConSet

Portfolio Rebalancing

As a final example of user-specified constraints, rebalance the portfolio using
the second hedging goal of hedgeopt. Assume that you are willing to spend
as much as $20,000 to rebalance your portfolio, and you want to know what
minimum portfolio sensitivities you can get for your money. In this form,
recall that the target cost ($20,000) is treated as an inequality constraint
during the optimization process.

For reference, startup hedgeopt without any user-specified linear inequality
constraints.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], 20000);

Sens =

-4345.36 295.81 -6586.64
Cost =

20000.00
Quantity' =

100.00
-151.86
-253.47

80.00
8.00
-18.18
40.00
10.00

This result corresponds to the $20,000 point along the Portfolio Sensitivities
Profile shown in the figure Rebalancing Cost on page 4-15.

Assume that, in addition to holding instruments 1, 4, 5, 7, and 8 fixed as
before, you want to bound the position of all instruments to within +/- 150
contracts (for each instrument, you cannot short more than 150 contracts and
you cannot long more than 150 contracts). These bounds disallow the current

4-19

4 Hedging Portfolios

4-20

position in the second and third instruments (-151.86 and -253.47). All other
instruments are currently within the upper/lower bounds.

As before, you can generate these constraints by first specifying the lower and
upper bounds vectors and then calling portcons.

LowerBounds = [-150 -150 -150 -150 -150 -150 -150 -150];
UpperBounds = [150 150 150 150 150 150 150 150];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, again call hedgeopt with ConSet as the last
input.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings,FixedInd, [], 20000, [], ConSet);

Sens
-8818.47 434.43 -4010.79
Cost =
19876.89
Quantity' =

100.00
-150.00
-150.00

80.00
8.00
-28.32
40.00
10.00

With these constraints, hedgeopt enforces the lower bound for the second and
third instruments. The cost incurred is $19,876.89.

Hedging with Constrained Portfolios

Hedging with Constrained Porifolios

In this section...

“Overview” on page 4-21

“Example: Fully Hedged Portfolio” on page 4-21

“Example: Minimize Portfolio Sensitivities” on page 4-24
“Example: Under-Determined System” on page 4-25
“Example: Portfolio Constraints with hedgeslf” on page 4-27

Overview

Both hedging functions cast the optimization as a constrained linear
least-squares problem. (See the function 1sqlin in the Optimization Toolbox
documentation for details.) In particular, 1sqlin attempts to minimize the
constrained linear least squares problem

mln%"Cx - d||§ suchthat A -x<b
x
Aeq X = beq

Ib<x<ub

where C, A, and Aeq are matrices, and d, b, beq, b, and ub are vectors.
For Financial Derivatives Toolbox software, x is a vector of asset holdings
(contracts).

Depending on the constraint and the number of assets in the portfolio, a
solution to a particular problem may or may not exist. Furthermore, if a
solution is found, it may not be unique. For a unique solution to exist, the
least squares problem must be sufficiently and appropriately constrained.

Example: Fully Hedged Portfolio

Recall that hedgeopt allows you to allocate an optimal hedge by one of two
goals:

e Minimize the cost of hedging a portfolio given a set of target sensitivities.

4-21

Hedging Portfolios

4-22

e Minimize portfolio sensitivities for a given set of maximum target costs.

As an example, reproduce the results for the fully hedged portfolio example.

TargetSens = [0 0 0];

FixedInd =[1 457 8];

[Sens,Cost,Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], [], TargetSens);

Sens

-0.00 -0.00 -0.00

Cost

23055.90
Quantity' =

98.72
-182.36
-19.55
80.00
8.00
-32.97
40.00
10.00

This example finds a unique solution at a cost of just over $23,000. The
matrix C (formed internally by hedgeopt and passed to 1sqlin) is the asset
Price vector expressed as a row vector.

C = Price' = [98.72 97.53 0.05 98.72 100.55 6.28 0.05 3.69]

The vector d is the current portfolio value Value0 = 23674.62. The example
maintains, as closely as possible, a constant portfolio value subject to the
specified constraints.

Hedging with Constrained Portfolios

Additional Constraints

In the absence of any additional constraints, the least squares objective
involves a single equation with eight unknowns. This is an under-determined
system of equations. Because such systems generally have an infinite number
of solutions, you need to specify additional constraints to achieve a solution
with practical significance.

The additional constraints can come from two sources:

e User-specified equality constraints

® Target sensitivity equality constraints imposed by hedgeopt

The example in “Fully Hedged Portfolio” on page 4-8 specifies five equality
constraints associated with holding assets 1, 4, 5, 7, and 8 fixed. This
reduces the number of unknowns from eight to three, which is still an
under-determined system. However, when combined with the first goal of
hedgeopt, the equality constraints associated with the target sensitivities

in TargetSens produce an additional system of three equations with three
unknowns. This additional system guarantees that the weighted average of
the delta, gamma, and vega of assets 2, 3, and 6, together with the remaining
assets held fixed, satisfy the overall portfolio target sensitivity needs in
TargetSens.

Combining the least-squares objective equation with the three portfolio
sensitivity equations provides an overall system of four equations with three
unknown asset holdings. This is no longer an under-determined system,
and the solution is as shown.

If the assets held fixed are reduced, for example, FixedInd = [1 4 5 7],
hedgeopt returns a no cost, fully hedged portfolio (Sens = [0 0 0] and Cost
= 0).

If you further reduce FixedInd (for example, [1 4 5], [1 4], or even []),
hedgeopt always returns a no cost, fully hedged portfolio. In these cases,
insufficient constraints result in an under-determined system. Although
hedgeopt identifies no cost, fully hedged portfolios, there is nothing unique
about them. These portfolios have little practical significance.

4-23

4 Hedging Portfolios

Constraints must be sufficient and appropriately defined. Additional
constraints having no effect on the optimization are called dependent
constraints. As a simple example, assume that parameter Z is constrained
such that Z <1. Furthermore, assume you somehow add another constraint

that effectively restricts Z <0. The constraint Z <1 now has no effect on
the optimization.

Example: Minimize Portfolio Sensitivities

To 1llustrate using hedgeopt to minimize portfolio sensitivities for a given
maximum target cost, specify a target cost of $20,000 and determine the new
portfolio sensitivities, holdings, and cost of the rebalanced portfolio.

MaxCost = 20000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [1 4 5 7 8], [], MaxCost);

Sens

-4345.36 295.81 -6586.64

Cost
20000.00
Quantity' =

100.00
-151.86
-253.47

80.00
8.00
-18.18
40.00
10.00

This example corresponds to the $20,000 point along the cost axis in

the figures Rebalancing Cost Profile on page 4-11, Funds Available for
Rebalancing on page 4-12, and Rebalancing Cost on page 4-15.

4-24

Hedging with Constrained Portfolios

When minimizing sensitivities, the maximum target cost is treated as an
inequality constraint; in this case, MaxCost is the most you are willing to
spend to hedge a portfolio. The least-squares objective matrix C is the matrix
transpose of the input asset sensitivities

C = Sensitivities'

a 3-by-8 matrix in this example, and d is a 3-by-1 column vector of zeros,
[0 0 O]".

Without any additional constraints, the least-squares objective results in

an under-determined system of three equations with eight unknowns. By
holding assets 1, 4, 5, 7, and 8 fixed, you reduce the number of unknowns from
eight to three. Now, with a system of three equations with three unknowns,
hedgeopt finds the solution shown.

Example: Under-Determined System

Reducing the number of assets held fixed creates an under-determined system
with meaningless solutions. For example, see what happens with only four
assets constrained.

FixedInd = [1 4 5 7];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [], MaxCost);

Sens =
-0.00 -0.00 -0.00
Cost =
20000.00
Quantity' =
100.00
-149.31
-14.91
80.00

4-25

Hedging Portfolios

4-26

8.00
-34.64
40.00
-32.60

You have spent $20,000 (all the funds available for rebalancing) to achieve a
fully hedged portfolio.

With an increase in available funds to $50,000, you still spend all available
funds to get another fully hedged portfolio.

MaxCost = 50000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, FixedInd, [],MaxCost);

Sens

-0.00 0.00 0.00
Cost

50000.00
Quantity' =

100.00
-473.78
-60.51
80.00
8.00
-18.20
40.00
385.60

All solutions to an under-determined system are meaningless. You buy and
sell various assets to obtain zero sensitivities, spending all available funds
every time. If you reduce the number of fixed assets any further, this problem
1s insufficiently constrained, and you find no solution (the outputs are all NaN).

Hedging with Constrained Portfolios

Note also that no solution exists whenever constraints are inconsistent.
Inconsistent constraints create an infeasible solution space; the outputs are
all NaN.

Example: Porifolio Constraints with hedgeslf

The other hedging function, hedgeslf, attempts to minimize portfolio
sensitivities such that the rebalanced portfolio maintains a constant value
(the rebalanced portfolio is hedged against market moves and is closest to
being self-financing). If a self-financing hedge is not found, hedges1f tries
to rebalance a portfolio to minimize sensitivities.

From a least-squares systems approach, hedgeslf first attempts to minimize
cost in the same way that hedgeopt does. If it cannot solve this problem (a
no cost, self-financing hedge is not possible), hedgeslf proceeds to minimize
sensitivities like hedgeopt. Thus, the discussion of constraints for hedgeopt
is directly applicable to hedgeslf as well.

To illustrate this hedging facility using equity exotic options, consider the
portfolio CRRInstSet obtained from the example MAT-file deriv.mat. The
portfolio consists of eight option instruments: two stock options, one barrier,
one compound, two lookback, and two Asian.

The hedging functions require inputs that include the current portfolio
holdings (allocations) and a matrix of instrument sensitivities. To create
these inputs, start by loading the example portfolio into memory

load deriv.mat;
Next, compute the prices and sensitivities of the instruments in this portfolio.

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);

Extract the current portfolio holdings (the quantity held or the number of
contracts).

Holdings = instget(CRRInstSet, 'FieldName', 'Quantity');

For convenience place the delta, gamma, and vega sensitivity measures into a
matrix of sensitivities.

4-27

4 Hedging Portfolios

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different
instrument in the portfolio and each column with a different sensitivity
measure.

disp([Price Holdings Sensitivities])

8.29 10.00 0.59 0.04 53.45
2.50 5.00 -0.31 0.03 67.00
12.13 1.00 0.69 0.03 67.00
3.32 3.00 -0.12 -0.01 -98.08
7.60 7.00 -0.40 -45926.32 88.18
11.78 9.00 -0.42 -112143.15 119.19
4.18 4.00 0.60 45926.32 49.21
3.42 6.00 0.82 112143.15 41.71

The first column contains the dollar unit price of each instrument, the second
contains the holdings of each instrument, and the third, fourth, and fifth
columns contain the delta, gamma, and vega dollar sensitivities, respectively.

Suppose that you want to obtain a delta, gamma and vega neutral portfolio
using hedgeslf.

[Sens, Valuel, Quantity]= hedgeslf(Sensitivities, Price,
Holdings)

Sens =
0.00
-0.00
0.00
Valuel =
313.93

Quantity =

10.00

4-28

Hedging with Constrained Portfolios

7.64
-1.56
26.13
.94
.73
.75
.11

0 O Ww oo

hedgeslf returns the portfolio dollar sensitivities (Sens), the value of the
rebalanced portfolio (Value1) and the new allocation for each instrument
(Quantity).

If valueO and Value1l represent the portfolio value before and after
rebalancing, respectively, you can verify the cost by comparing the portfolio
values.

ValueO= Holdings' * Price
ValueO =
313.93

In this example, the portfolio is fully hedged (simultaneous delta, gamma,
and vega neutrality) and self-financing (the values of the portfolio before and
after balancing (ValueO and Value1) are the same.

Suppose now that you want to place some upper and lower bounds on the
individual instruments in your portfolio. By using Financial Toolbox function
portcons, you can specify these constraints, along with a variety of general
linear inequality constraints.

As an example, assume that, in addition to holding instrument 1 fixed

as before, you want to bound the position of all instruments to within +/-
20 contracts (for each instrument, you cannot short or long more than 20
contracts). Applying these constraints disallows the current position in the
fourth instrument (long 26.13). All other instruments are currently within
the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper
bounds vectors and then calling portcons.

4-29

4 Hedging Portfolios

LowerBounds = [-20 -20 -20 -20 -20 -20 -20 -20];
UpperBounds = [20 20 20 20 20 20 20 20];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, call hedgeslf with ConSet as the last input.

[Sens, Cost, Quantity1] = hedgeslf(Sensitivities, Price,
Holdings, 1, ConSet)

Sens

o

.00

Cost
313.93
Quantity1 =

10.00
5.28
10.98
20.00
20.00
-6.99
-20.00
9.39

Observe that hedgeslf enforces the upper bound on the fourth instrument,
and the portfolio continues to be fully hedged and self-financing.

4-30

Function Reference

Portfolio Hedge Allocation (p. 5-3)
Interest-Rate Term Structure (p. 5-3)

Heath-Jarrow-Morton Trees (p. 5-3)

Black-Derman-Toy Trees (p. 5-4)
Black-Karasinski Trees (p. 5-4)
Cox-Ross-Rubinstein Trees (p. 5-5)

Equal Probabilities Binomial Trees
(p. 5-5)
Hull-White Trees (p. 5-6)

Implied Trinomial Tree (p. 5-6)

Heath-Jarrow-Morton Utilities
(p. 5-7)
Black-Derman-Toy Utilities (p. 5-7)

Black-Karasinski Utilities (p. 5-8)

Cox-Ross-Rubinstein Utilities
(p. 5-9)

Equal Probabilities Tree Utilities
(p. 5-10)

Work with hedge portfolios

Work with interest-rate term
structure

Work with Heath-Jarrow-Morton
trees

Work with Black-Derman-Toy trees
Work with Black-Karasinski trees

Work with Cox-Ross-Rubinstein
trees

Working with Equal Probabilities
Binomial trees

Price and sensitivity functions for
working with Hull-White trees

Price and sensitivity functions for
working with Hull-White trees

Work with Heath-Jarrow-Morton
utilities

Work with Black-Derman-Toy
utilities

Work with Black-Karasinski utilities
Work with Cox-Ross-Rubinstein
utilities

Work with equal probabilities tree
utilities

5 Function Reference

Implied Trinomial Tree Utilities Work with implied trinomial tree
(p. 5-10) utilities

Hull-White Utilities (p. 5-11) Work with Hull-White utilities
Tree Manipulation (p. 5-11) General tree manipulation

Derivatives Pricing Options (p. 5-12) Work with derivatives pricing

options
Pricing and Sensitivity Using Work with Black-Scholes Option
Black-Scholes Option Pricing Model Pricing

(p. 5-12)

Pricing and Sensitivity Using Black Work with Black Option Pricing
Option Pricing Model (p. 5-13)

Pricing and Sensitivity Using Work with Longstaff-Schwartz
Longstaff-Schwartz Option Pricing Option Pricing
Model (p. 5-14)

Pricing and Sensitivity Using Work with Nengjiu Ju Option
Nengjiu Ju Approximation Model Pricing

(p. 5-14)

Pricing and Sensitivity Using Work with Role-Geske-Whaley

Role-Geske-Whaley Option Pricing Option Pricing
Model (p. 5-15)

Pricing and Sensitivity Using Work with Bjerksund-Stensland
Bjerksund-Stensland Option Pricing Option Pricing
Model (p. 5-15)

Pricing and Sensitivity Using Stulz Work with Bjerksund-Stensland

Option Pricing Model (p. 5-16) Option Pricing

Instrument Portfolio Handling Work with instrument portfolios

(p. 5-16)

Financial Object Structures (p. 5-18) Work with financial structures
Interest Term Structure (p. 5-18) Work with interest term structure
Date (p. 5-18) Display date entries

Graphical Display (p. 5-19) Display tree information graphically

5-2

Portfolio Hedge Allocation

Porifolio Hedge Allocation

hedgeopt Allocate optimal hedge for target
costs or sensitivities

hedgeslf Self-financing hedge

Interest-Rate Term Structure

bondbyzero Price bond from set of zero curves

cfbyzero Price cash flows from set of zero
curves

fixedbyzero Price fixed-rate note from set of zero
curves

floatbyzero Price floating-rate note from set of
Zero curves

intenvprice Price instruments from set of zero
curves

intenvsens Instrument price and sensitivities

from set of zero curves

swapbyzero Price swap instrument from set of
ZEero curves

Heath-Jarrow-Morton Trees

hjmprice Instrument prices from HJM
interest-rate tree

hjmsens Instrument prices and sensitivities
from HJM interest-rate tree

5-3

5 Function Reference

hjmtimespec Specify time structure for HIM
interest-rate tree

hjmtree Construct HJM interest-rate tree

hjmvolspec Specify HJM interest-rate volatility
process

swaptionbyhijm Price swaption from HJM

Interest-rate tree

Black-Derman-Toy Trees

bdtprice Instrument prices from BDT
interest-rate tree

bdtsens Instrument prices and sensitivities
from BDT interest-rate tree

bdttimespec Specify time structure for BDT
interest-rate tree

bdttree Construct BDT interest-rate tree

bdtvolspec Specify BDT interest-rate volatility
process

Black-Karasinski Trees

bkprice Instrument prices from
Black-Karasinski interest-rate
tree

bksens Instrument prices and sensitivities
from Black-Karasinski interest-rate
tree

5-4

Cox-Ross-Rubinstein Trees

bktimespec Specify time structure for
Black-Karasingski tree

bktree Construct Black-Karasinski
interest-rate tree

bkvolspec Specify Black-Karasinski
interest-rate volatility process

swaptionbybk Price swaption from BK interest-rate
tree

Cox-Ross-Rubinstein Trees

crrprice Instrument prices from CRR tree

crrsens Instrument prices and sensitivities
from CRR tree

crrtimespec Specify time structure for CRR tree

crrtree Construct CRR stock tree

Equal Probabilities Binomial Trees

egpprice Instrument prices from EQP
binomial tree

egpsens Instrument prices and sensitivities
from EQP binomial tree

eqgptimespec Specify time structure for EQP
binomaial tree

egptree Construct EQP stock tree

5-5

5 Function Reference

Hull-White Trees

hwcalbycap Calibrate Hull-White tree using caps

hwcalbyfloor Calibrate Hull-White tree using
floors

hwprice Instrument prices from Hull-White
interest-rate tree

hwsens Instrument prices and sensitivities
from HW interest-rate tree

hwtimespec Specify time structure for Hull-White
tree

hwtree Construct Hull-White interest-rate
tree

hwvolspec Specify Hull-White interest-rate

volatility process

Implied Trinomial Tree

ittprice Price instruments using implied
trinomial tree (ITT)

ittsens Instrument sensitivities and prices
using implied trinomial tree (ITT)

itttimespec Specify time structure using implied
trinomial tree (ITT)

itttree Build implied trinomial stock tree

stockoptspec Specify European stock option
structure

5-6

Heath-Jarrow-Morton Utilities

Heath-Jarrow-Morton Utilities

bondbyhjm Price bond from HJM interest-rate
tree

capbyhjm Price cap instrument from HJM
interest-rate tree

cfbyhjm Price cash flows from HJM

interest-rate tree

fixedbyhjm Price fixed-rate note from HJM
interest-rate tree

floatbyhjm Price floating-rate note from HJM
interest-rate tree

floorbyhjm Price floor instrument from HJM
interest-rate tree

mmktbyhjm Create money-market tree from
HJM interest-rate tree

optbndbyhjm Price bond option from HJM
interest-rate tree

optembndbyhjm Price bonds with embedded
options by Heath-Jarrow-Morton
interest-rate tree

swapbyhjm Price swap instrument from HJM
interest-rate tree

Black-Derman-Toy Utilities

bondbybdt Price bond from BDT interest-rate
tree
capbybdt Price cap instrument from BDT

interest-rate tree

5 Function Reference

cfbybdt
fixedbybdt
floatbybdt
floorbybdt
mmktbybdt
optbndbybdt

optembndbybdt

swapbybdt

swaptionbybdt

Black-Karasinski Utilities

bondbybk

capbybk

cfbybk

Price cash flows from BDT
interest-rate tree

Price fixed-rate note from BDT
interest-rate tree

Price floating-rate note from BDT
interest-rate tree

Price floor instrument from BDT
Interest-rate tree

Create money-market tree from BDT
interest-rate tree

Price bond option from BDT
interest-rate tree

Price bonds with embedded options
by Black-Derman-Toy interest rate
tree

Price swap instrument from BDT
interest-rate tree

Price swaption from BDT
interest-rate tree

Price bond from Black-Karasinski
interest-rate tree

Price cap instrument from
Black-Karasinski interest-rate
tree

Price cash flows from
Black-Karasinski interest-rate
tree

Cox-Ross-Rubinstein Utilities

fixedbybk

floatbybk

floorbybk

optbndbybk

optembndbybk

swapbybk

Cox-Ross-Rubinstein Utilities

asianbycrr

barrierbycrr

compoundbycrr

lookbackbycrr
optstockbycrr

Price fixed-rate note from
Black-Karasinski interest-rate
tree

Price floating-rate note from
Black-Karasinski interest-rate tree

Price floor instrument from
Black-Karasinski interest-rate tree

Price bond option from
Black-Karasinski interest-rate
tree

Price bonds with embedded options
by Black-Karasinski interest-rate
tree

Price swap instrument from
Black-Karasinski interest-rate tree

Price Asian option from CRR
binomial tree

Price barrier option from CRR
binomial tree

Price compound option from CRR
binomial tree

Price lookback option from CRR tree
Price stock option from CRR tree

5 Function Reference

Equal Probabilities Tree Utilities

asianbyeqgp Price Asian option from EQP
binomaial tree

barrierbyeqp Price barrier option from EQP
binomial tree

compoundbyeqp Price compound option from EQP
binomial tree

lookbackbyeqgp Price lookback option from EQP
binomial tree

optstockbyeqp Price stock option from EQP
binomaial tree

Implied Trinomial Tree Utilities
asianbyitt Price Asian options using implied
trinomial tree (ITT)

barrierbyitt Price barrier options using implied
trinomial tree (ITT)

compoundbyitt Price compound options using
implied trinomial tree (ITT)

lookbackbyitt Price lookback option using implied
trinomial tree (ITT)

optstockbyitt Price options on stocks using implied
trinomial tree (ITT)

5-10

Hull- White Utilities

Hull-White Utilities

bondbyhw Price bond from Hull-White
interest-rate tree

capbyhw Price cap instrument from
Hull-White interest-rate tree

cfbyhw Price cash flows from Hull-White
interest-rate tree

fixedbyhw Price fixed-rate note from Hull-White
interest-rate tree

floatbyhw Price floating-rate note from
Hull-White interest-rate tree

floorbyhw Price floor instrument from
Hull-White interest-rate tree

optbndbyhw Price bond option from Hull-White

interest-rate tree

optembndbyhw Price bonds with embedded options
by Hull-White interest-rate tree

swapbyhw Price swap instrument from
Hull-White interest-rate tree

swaptionbyhw Price swaption from HW
interest-rate tree

Tree Manipulation

bushpath Extract entries from node of bushy
tree

bushshape Retrieve shape of bushy tree

cvtree Convert inverse-discount tree to

interest-rate tree

mkbush Create bushy tree

5-11

5 Function Reference

mktree Create recombining binomial tree
mktrintree Create recombining trinomial tree
treepath Entries from node of recombining

binomial tree
treeshape Shape of recombining binomial tree

trintreepath Entries from node of recombining
trinomial tree

trintreeshape Shape of recombining trinomial tree

Derivatives Pricing Options

derivget Get derivatives pricing options
derivset Set or modify derivatives pricing
options

Pricing and Sensitivity Using Black-Scholes Option Pricing
Model

assetbybls Calculate price of asset-or-nothing
digital options using Black-Scholes
model

assetsensbybls Calculate price and sensitivities

of asset-or-nothing digital options
using Black-Scholes model

cashbybls Calculate price of cash-or-nothing
digital options using Black-Scholes
model

5-12

Pricing and Sensitivity Using Black Option Pricing Model

cashsensbybls

chooserbybls

gapbybls

gapsensbybls

impvbybls

optstockbybls

optstocksensbybls

supersharebybls

supersharesensbybls

Calculate price and sensitivities of
cash-or-nothing digital options using
Black-Scholes model

Price European simple chooser
options using Black-Scholes model

Calculate price of gap digital options
using Black-Scholes model

Calculate price and sensitivities
of gap digital options using
Black-Scholes model

Calculate implied volatility using
Black-Scholes option pricing model

Price options using Black-Scholes
option pricing model

Calculate option prices and
sensitivities using Black-Scholes
option pricing model

Calculate price of supershare digital
options using Black-Scholes model

Calculate price and sensitivities of
supershare digital options using
Black-Scholes model

Pricing and Sensitivity Using Black Option Pricing Model

capbyblk

floorbyblk

impvbyblk

Price caps using Black option pricing
model

Price floors using Black option
pricing model

Calculate implied volatility using
Black option pricing model

5-13

5 Function Reference

5-14

optstockbyblk

optstocksensbyblk

Price options on futures using Black
option pricing model

Calculate option prices and
sensitivities on futures using Black
pricing model

Pricing and Sensitivity Using Longstaff-Schwartz Option

Pricing Model

basketbyls

basketsensbyls

basketstockspec

Price basket options using
Longstaff-Schwartz model

Calculate price and sensitivities
for basket options using
Longstaff-Schwartz model

Specify basket stock structure

Pricing and Sensitivity Using Nengjiu Ju Approximation

Model

basketbyju

basketsensbyju

Price European basket options using
Nengjiu Ju approximation model

Calculate European basket options
price and sensitivities using Nengjiu
Ju approximation model

Pricing and Sensitivity Using Role-Geske-Whaley Option Pricing Model

Pricing and Sensitivity Using Role-Geske-Whaley Option

Pricing Model

impvbyrgw
optstockbyrgw

optstocksensbyrgw

Pricing and Sensitivity Using Bjerksund-Stensland Option

Pricing Model

impvbybjs
optstockbybjs

optstocksensbybjs

Calculate implied volatility using
Roll-Geske-Whaley option pricing
model for American call option

Calculate American call option
prices using Roll-Geske-Whaley
option pricing model

Calculate American call option
prices and sensitivities using
Roll-Geske-Whaley option pricing
model

Calculate implied volatility using
Bjerksund-Stensland 2002 option
pricing model

Price American options using
Bjerksund-Stensland 2002 option
pricing model

Calculate American option
prices and sensitivities using
Bjerksund-Stensland 2002 option
pricing model

5-15

5 Function Reference

5-16

Pricing and Sensitivity Using Stulz Option Pricing Model

maxassetbystulz

maxassetsensbystulz

minassetbystulz

minassetsensbystulz

Instrument Porifolio Handling

instadd
instaddfield

instasian
instbarrier
instbond
instcap
instcf

instcompound

Calculate European rainbow option
price on maximum of two risky
assets using Stulz option pricing
model

Calculate European rainbow option
prices and sensitivities on maximum
of two risky assets using Stulz
pricing model

Calculate European rainbow option
prices on minimum of two risky
assets using Stulz option pricing
model

Calculate European rainbow option
prices and sensitivities on minimum
of two risky assets using Stulz
pricing model

Add types to instrument collection

Add new instruments to instrument
collection

Construct Asian option
Construct barrier option
Construct bond instrument
Construct cap instrument
Construct cash flow instrument

Construct compound option

Instrument Portfolio Handling

instdelete

instdisp
instfields

instfind

instfixed
instfloat
instfloor
instget
instgetcell

instlength
instlookback
instoptbnd

instoptembnd

instoptstock

instselect

instsetfield

instswap
instswaption

insttypes

Complement of instrument set by
matching conditions

Display instruments
List field names

Search instruments for matching
conditions

Construct fixed-rate instrument
Construct floating-rate instrument
Construct floor instrument

Data from instrument variable

Data and context from instrument
variable

Count instruments
Construct lookback option
Construct bond option

Constructor for 'Type',
'OptEmBond' bond with embedded
option

Construct stock option

Create instrument subset by
matching conditions

Add or reset data for existing
instruments

Construct swap instrument
Construct swaption instrument

List types

5-17

5 Function Reference

5-18

Financial Object Structures

classfin

isafin

stockspec

Interest Term Structure

date2time

disc2rate

intenvget

intenvset

rate2disc

ratetimes

time2date

Date

datedisp

Create financial structure or return
financial structure class name

True if input argument is financial
structure type or financial object
class

Create stock structure

Time and frequency from dates

Interest rates from cash flow
discounting factors

Properties of interest-rate structure

Set properties of interest-rate
structure

Discount factors from interest rates

Change time intervals defining
interest-rate environment

Dates from time and frequency

Display date entries

Graphical Display

Graphical Display

treeviewer Tree information

5-19

5 Function Reference

5-20

Functions — Alphabetical
List

asianbycrr

Purpose Price Asian option from CRR binomial tree

Syntax Price = asianbycrr(CRRTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

Arguments

CRRTree Stock tree structure created by crrtree.

OptSpec NINST-by-1 list of string values 'Call' or 'Put'.

Strike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates. The settle
date for every Asian option is set to the
valuation date of the stock tree. The Asian
argument Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):

6-2

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

asianbycrr

Description

Examples

AmericanOpt (Optional) If AmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If
AmericanOpt = 1, the option is an American

option.

AvgType (Optional) String = 'arithmetic' for arithmetic
average (default) or 'geometric' for geometric
average.

AvgPrice (Optional) Scalar representing the average

price of the underlying asset at Settle. This
argument is used when AvgDate < Settle.
Default is the current stock price.

AvgDate (Optional) Scalar representing the date on
which the averaging period begins. Default =
Settle.

Price = asianbycrr(CRRTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)
calculates the value of fixed- and floating-strike Asian options. To
compute the value of a floating-strike Asian option, specify Strike as
NaN. Fixed-strike Asian options are also known as average price options.
Floating-strike Asian options are also known as average strike options.

Price is a NINST-by-1 vector of expected prices at time 0.

Asian options are priced using Hull-White (1993). Consequently, for
these options only the root node contains a unique price.

Price a floating-strike Asian option using a CRR binomial tree.

Load the file deriv.mat, which provides CRRTree. The CRRTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat;

6-3

asianbycrr

Set the required values. Other arguments will use defaults.
OptSpec = 'put';
Strike = NaN;

Settle = '01-Jan-2003';
ExerciseDates = '01-dan-2004"';

Use asianbycrr to compute the price of the option.

Price = asianbycrr(CRRTree, OptSpec, Strike, Settle,
ExerciseDates)

Price =
1.2177

References Hull, J., and A. White, “Efficient Procedures for Valuing European and
American Path-Dependent Options,” Journal of Derivatives, Volume
1, pp. 21-31.

See Also crrtree, instasian

6-4

asianbyeqp

Purpose

Syntax

Arguments

Price Asian option from EQP binomial tree

Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)

EQPTree
OptSpec
Strike

Settle

ExerciseDates

Stock tree structure created by egptree.
NINST-by-1 list of string values 'Call' or 'Put’.

NINST-by-1 vector of strike price values. Each
row is the schedule for one option.

NINST-by-1 vector of Settle dates. The settle
date for every Asian option is set to the valuation
date of the stock tree. The Asian argument
Settle is ignored.

For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row

is the schedule for one option. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

asianbyeqp

AmericanOpt (Optional) If AmericanOpt = 0O, NaN, or is
unspecified, the option is a European option. If
AmericanOpt = 1, the option is an American

option.

AvgType (Optional) String = 'arithmetic' for arithmetic
average (default) or 'geometric' for geometric
average.

AvgPrice (Optional) Scalar representing the average

price of the underlying asset at Settle. This
argument is used when AvgDate < Settle.
Default is the current stock price.

AvgDate (Optional) Scalar representing the date on which
the averaging period begins.

Description Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)
calculates the value of fixed- and floating-strike Asian options. To
compute the value of a floating-strike Asian option, specify Strike as
NaN. Fixed-strike Asian options are also known as average price options.
Floating-strike Asian options are also known as average strike options.

Price is a NINST-by-1 vector of expected prices at time 0.

Examples Price a floating-strike Asian option using an EQP equity tree.

Load the file deriv.mat, which provides EQPTree. The EQPTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat;
Set the required values. Other arguments will use defaults.

OptSpec = 'put';
Strike = NaN;

6-6

asianbyeqgp

Settle = '01-Jan-2003';
ExerciseDates = '01-dan-2004"';

Use asianbyeqp to compute the price of the option.

Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle,
ExerciseDates)

Price =
1.2724

References Hull, J., and A. White, “Efficient Procedures for Valuing European and
American Path-Dependent Options,” Journal of Derivatives, Volume
1, pp. 21-31.

See Also egptree, instasian

asianbyitt

Purpose Price Asian options using implied trinomial tree (ITT)
Syntax Price = asianbyitt(ITTTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)
Arguments
ITTTree Stock tree structure created by itttree.
OptSpec NINST-by-1 list of string values 'call' or 'put'.
Strike NINST-by-1 vector of strike price values. Each
row represents the schedule for one option.
Settle NINST-by-1 vector of Settle dates. The settle
date for every Asian option is set to the valuation
date of the stock tree. The Asian argument
Settle is ignored.
ExerciseDates For a European option (AmericanOpt = 0):

6-8

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date which is
the option expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

asianbyitt

Description

Examples

AmericanOpt (Optional) If AmericanOpt = O, NaN, or is
unspecified, the option is a European option. If
AmericanOpt = 1, the option is an American

option.

AvgType (Optional) String = 'arithmetic' for arithmetic
average (default) or 'geometric' for geometric
average.

AvgPrice (Optional) Scalar representing the average

price of the underlying asset at Settle. This
argument is used when AvgDate < Settle.
Default is the current stock price.

AvgDate (Optional) Scalar representing the date on which
the averaging period begins.

Price = asianbyitt(ITTTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, AvgType, AvgPrice, AvgDate)
calculates the value of fixed- and floating-strike Asian options. To
compute the value of a floating-strike Asian option, specify Strike as
NaN. Fixed-strike Asian options are also known as average price options.
Floating-strike Asian options are also known as average strike options.

Price is a NINST-by-1 vector of expected prices at time 0.

Note The Settle date for every Asian option is set to the
ValuationDate of the stock tree. The Asian argument, Settle, is
ignored.

Price a floating-strike Asian option using an ITT equity tree.

Load the file deriv.mat which provides the ITTTree. The ITTTree
structure contains the stock specification and time information needed
to price the option.

6-9

asianbyitt

6-10

References

See Also

load deriv.mat;

Set the required values. Other arguments will use defaults.
OptSpec = 'put';
Strike = NaN;

Settle = '01-Jan-2006"';
ExerciseDates = '01-Jan-2007"';

Use asianbyitt to compute the price of the option.
Price = asianbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates)
Price =

1.0778

Hull, J., and A. White, “Efficient Procedures for Valuing European and
American Path-Dependent Options,” Journal of Derivatives, Volume
1, 1993, pp. 21-31.

instasian, itttree

assetbybls

Purpose
Syntax

Arguments

Description

Examples

Calculate price of asset-or-nothing digital options using Black-Scholes
model

Price = assetbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike)

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.
Strike NINST-by-1 vector of payoff strike price values.

Price = assetbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike) computes asset-or-nothing option prices using the
Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.

Consider two asset-or-nothing put options on a nondividend paying
stock with a strike of 95 and 93 and expiring on January 30, 2009.
On November 3, 2008 the stock is trading at 97.50. Using this data,
calculate the price of the asset-or-nothing put options if the risk-free
rate 1s 4.5% and the volatility is 22%.

Create the RateSpec:
Settle = 'Nov-3-2008';

Maturity = 'Jan-30-2009';
Rates = 0.045;

6-11

assetbybls

Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding);

Define the StockSpec:
AssetPrice = 97.50;

Sigma = .22;
StockSpec = stockspec(Sigma, AssetPrice);

Define the put options:

OptSpec = {'put'};
Strike = [95;93];

Calculate the price:

Paon = assetbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Paon =

33.7666
26.9662

See Also assetsensbybls, cashbybls, gapbybls, supersharebybls

6-12

assetsensbybls

Purpose

Syntax

Arguments

Calculate price and sensitivities of asset-or-nothing digital options
using Black-Scholes model

PriceSens

assetsensbybls(RateSpec, StockSpec, Settle,

Maturity, OptSpec, Strike)
PriceSens = assetsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, OutSpec)

RateSpec

StockSpec
Settle
Maturity
OptSpec
Strike
OutSpec

The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

Stock specification. See stockspec.

NINST-by-1 vector of settlement or trade dates.
NINST-by-1 vector of maturity dates.

NINST-by-1 cell array of strings 'call' or 'put'.
NINST-by-1 vector of strike price values.

(Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
You can specify parameter name/value pairs

in any order. Names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

® NOUT-by-1 or 1-by-NOUT cell array of strings
indicating the nature and order of the outputs
for the function. Possible values are 'Price’,
'Delta’, 'Gamma', 'Vega', 'Lambda’, 'Rho’,
'Theta', or 'All"'.

6-13

assetsensbybls

6-14

Description

Examples

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

To invoke from a function: [Price, Lambda,
Rho] = assetsensbybls(..., 'OutSpec',
{'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

® Default is OutSpec = {'Price'}.

PriceSens = assetsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike) computes asset-or-nothing option prices
using the Black-Scholes option pricing model.

PriceSens = assetsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, OutSpec) includes the parameter/value
pairs defined for OutSpec, and computes asset-or-nothing option prices
and sensitivities using the Black-Scholes option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices and
sensitivities.

Consider two asset-or-nothing put options on a nondividend paying
stock with a strike of 95 and 93 and expiring on January 30, 2009.

On November 3, 2008 the stock is trading at 97.50. Using this data,
calculate the price and sensitivity of the asset-or-nothing put options if
the risk-free rate is 4.5% and the volatility is 22%.

Create the RateSpec:

Settle = 'Nov-3-2008';

assetsensbybls

Maturity = 'Jan-30-2009';

Rates = 0.045;

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding);

Define the StockSpec:

AssetPrice = 97.50;
Sigma = .22;
StockSpec = stockspec(Sigma, AssetPrice);

Define the put options:

OptSpec = {'put'};
Strike = [95;93];

Calculate the delta, price, and gamma:
OutSpec = { 'delta';'price';'gamma'};
[Delta, Price, Gamma] = assetsensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)
Delta =
-3.0833
-2.8337
Price =
33.7666
26.9662

Gamma =

0.0941

6-15

assetsensbybls

0.1439

See Also assetbybls

6-16

barrierbycrr

Purpose

Syntax

Arguments

Price barrier option from CRR binomial tree

[Price, PriceTree] = barrierbycrr(CRRTree, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier,
Rebate, Options)

CRRTree Stock tree structure created by crrtree.
OptSpec NINST-by-1 list of string values 'Call' or 'Put'.
Strike NINST-by-1 vector of strike price values. Each

row is the schedule for one option.

Settle NINST-by-1 vector of Settle dates. The settle
date for every barrier option is set to the
valuation date of the stock tree. The barrier
argument Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

6-17

barrierbycrr

AmericanOpt If AmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If AmericanOpt =
1, the option is an American option.

BarrierSpec List of string values:
'UI': Up Knock In
'U0"': Up Knock Out
'DI': Down Knock In
'DO': Down Knock Out

Barrier Vector of barrier values.

Rebate (Optional) NINST-by-1 matrix of rebate values.
Default = 0. For Knock-in options, the rebate
is paid at expiry. For Knock-out options, the
rebate is paid when the barrier is reached.

Options (Optional) Derivatives pricing options structure
created with derivset.

See instbarrier for a description of barrier contract arguments.

Description [Price, PriceTree] = barrierbycrr(CRRTree, OptSpec, Strike,
Settle, ExerciseDates, AmericanOpt, BarrierSpec, Barrier,
Rebate, Options) computes the price of barrier options using a CRR
binomial tree.

Price is a NINST-by-1 vector of expected prices at time 0.
PriceTree is a tree structure with a vector of instrument prices at
each node.

Examples Price a barrier option using a CRR binomial tree.

Load the file deriv.mat, which provides CRRTree. The CRRTree
structure contains the stock specification and time information needed
to price the option.

6-18

barrierbycrr

References

See Also

load deriv.mat;

Set the required values. Other arguments will use defaults.

OptSpec = 'Call’;

Strike = 105;

Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006";
AmericanOpt = 1;

BarrierSpec = 'UI';

Barrier = 102;

Price = barrierbycrr(CRRTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)

Price =

12.1272

Derman, E., I. Kani, D. Ergener and I. Bardhan, “Enhanced Numerical
Methods for Options with Barriers,” Financial Analysts Journal,
(Nov. - Dec. 1995), pp. 65-74.

crrtree, instbarrier

6-19

barrierbyeqp

Purpose Price barrier option from EQP binomial tree
Syntax [Price, PriceTree] = barrierbyeqp(EQPTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate,
Options)
Arguments
EQPTree Stock tree structure created by egptree.
OptSpec NINST-by-1 list of string values 'Call' or 'Put'.
Strike NINST-by-1 vector of strike price values. Each
row is the schedule for one option.
Settle NINST-by-1 vector of Settle dates. The settle

date for every barrier option is set to the
valuation date of the stock tree. The barrier
argument Settle is ignored.

ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row

is the schedule for one option. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

6-20

barrierbyeqp

Description

Examples

AmericanOpt

BarrierSpec

Barrier

Rebate

Options

If AmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If AmericanOpt =
1, the option is an American option.

List of string values:
'UI': Up Knock In
'U0"': Up Knock Out
'DI': Down Knock In
'DO': Down Knock Out
Vector of barrier values.

(Optional) NINST-by-1 matrix of rebate values.
Default = 0. For Knock-in options, the rebate
is paid at expiry. For Knock-out options, the
rebate is paid when the barrier is reached.

(Optional) Derivatives pricing options structure
created with derivset.

See instbarrier for a description of barrier contract arguments.

[Price, PriceTree]

= barrierbyeqp(EQPTree, OptSpec, Strike,

ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate,
Options) computes the price of barrier options using an equal
probabilities binomial tree.

Price is a NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at

each node.

Price a barrier option using an EQP equity tree.

Load the file deriv.mat, which provides EQPTree. The EQPTree

structure contains the stock specification and time information needed

to price the option.

6-21

barrierbyeqp

load deriv.mat;

Set the required values. Other arguments will use defaults.

OptSpec = 'Call’;

Strike = 105;

Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006";
AmericanOpt = 1;

BarrierSpec = 'UI';

Barrier = 102;

Price = barrierbyeqp(EQPTree, OptSpec, Strike, Settle,
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)

Price =
12.2632

References Derman, E., I. Kani, D. Ergener and I. Bardhan, “Enhanced Numerical
Methods for Options with Barriers,” Financial Analysts Journal,
(Nov. - Dec. 1995), pp. 65-74.

See Also egptree, instbarrier

6-22

barrierbyitt

Purpose

Syntax

Arguments

Price barrier options using implied trinomial tree (ITT)

[Price, PriceTree]

= barrierbyitt(ITTTree, OptSpec, Strike,

ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate,

Options)

ITTTree
OptSpec
Strike

Settle

ExerciseDates

Stock tree structure created by itttree.
NINST-by-1 list of string values 'Call' or 'Put’.

European and American option, NINST-by-1
vector of strike price values. Each row is the
schedule for one option.

NINST-by-1 vector of Settle dates. The settle
date for every barrier option is set to the
valuation date of the stock tree. The barrier
argument Settle is ignored.

For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row

is the schedule for one option. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date is
listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

6-23

barrierbyitt

AmericanOpt If AmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If AmericanOpt =
1, the option is an American option.

BarrierSpec List of string values:
'UI': Up Knock In
'U0"': Up Knock Out
'DI': Down Knock In
'DO': Down Knock Out

Barrier Vector of barrier values.

Rebate (Optional) NINST-by-1 matrix of rebate values.
Default = 0. For Knock In options, the rebate
is paid at expiry. For Knock Out options, the
rebate is paid when the barrier is reached.

Options (Optional) Derivatives pricing options structure
created with derivset.

See instbarrier for a description of barrier contract arguments.

Description [Price, PriceTree] = barrierbyitt(ITTTree, OptSpec, Strike,
ExerciseDates, AmericanOpt, BarrierSpec, Barrier, Rebate,
Options) computes the price of barrier options using an implied
trinomial tree.

Price is a NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Note The Settle date for every barrier option is set to the
ValuationDate of the stock tree. The barrier argument, Settle, is
ignored.

6-24

barrierbyitt

Examples

References

See Also

Price a barrier option using an ITT tree.

Load the file deriv.mat which provides the ITTTree. The ITTTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat;

Set the required values. Other arguments will use defaults.

OptSpec = 'Call';

Strike = 85;

Settle = '01-Jan-2006"';
ExerciseDates = '31-Dec-2008';
AmericanOpt = 1;

BarrierSpec = 'UI';

Barrier = 115;

Price = barrierbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,...

BarrierSpec,Barrier)
Price =

2.407

Derman, E., I. Kani, D. Ergener, and I. Bardhan, “Enhanced Numerical
Methods for Options with Barriers,” Financial Analysts Journal,
Nov.-Dec.,1995.

instbarrier, itttree

6-25

basketbyju

6-26

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Examples

Price European basket options using Nengjiu Ju approximation model

Price = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, Maturity)

Price = basketbyju(RateSpec, BasketStockSpec, OptSpec,
Strike, Settle, Maturity) prices European basket options using the
Nengjiu Ju approximation model.

RateSpec

Annualized, continuously compounded rate term structure. For
more information on the interest rate specification, see intenvset.

BasketStockSpec

BasketStock specification. For information on the basket of
stocks specification, see basketstockspec.

OptSpec

String or 2-by-1 cell array of the strings 'call' or 'put’.
Strike

Scalar for the option strike price.
Settle

Scalar of the settlement or trade date specified as a string or
serial date number.

Maturity

Maturity date specified as a string or serial date number.

Price

Price of the basket option.

Find a European call basket option of two stocks. Assume that the
stocks are currently trading at $10 and $11.50 with annual volatilities

basketbyju

of 20% and 25%, respectively. The basket contains one unit of the
first stock and one unit of the second stock. The correlation between
the assets 1s 30%. On January 1, 2009, an investor wants to buy a
1-year call option with a strike price of $21.50. The current annualized,
continuously compounded interest rate is 5%. Use this data to compute
the price of the call basket option with the Ju approximation model.

Settle = 'Jan-1-2009';
Maturity = 'Jan-1-2010';

% Define RateSpec

Rate = 0.05;

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates',

Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric, and
% have ones along the main diagonal.
Corr = [1 0.30; 0.30 1];

% Define BasketStockSpec

AssetPrice = [10;11.50];

Volatility = [0.2;0.25];

Quantity = [1;1];

BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

%Compute the price of the call basket option

OptSpec = {'call'};

Strike = 21.5;

PriceCorr30 = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)

This returns:

PriceCorr30 =

2.12214

6-27

basketbyju

Compute the price of the basket instrument for these two stocks with a
correlation of 60%. Then compare this cost to the total cost of buying
two individual call options:

Corr = [1 0.60; 0.60 1];

% Define the new BasketStockSpec

BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

%Compute the price of the call basket option with Correlation = -0.60
PriceCorr60 = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)

This returns:

PriceCorr60 =
2.27566
The following table summarizes the sensitivity of the option to

correlation changes. In general, the premium of the basket option
decreases with lower correlation and increases with higher correlation.

Correlation -0.60 -0.30 0 0.30 0.60
Premium 1.52830 | 1.76006 | 1.9527 2.1221 | 2.2756

Compute the cost of two vanilla 1-year call options using the
Black-Scholes (BLS) model on the individual assets:

StockSpec = stockspec(Volatility, AssetPrice);
StrikeVanilla= [10;11.5];

PriceVanillaOption = optstockbybls(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, StrikeVanilla)

This returns:

PriceVanillaOption =

6-28

basketbyju

1.0451
1.4186

Find the total cost of buying two individual call options:

sum(PriceVanillaOption)

This returns:

ans=2.4637

The total cost of purchasing two individual call options is $2.4637,
compared to the maximum cost of the basket option of $2.27 with a
correlation of 60%.

References Nengjiu Ju, “Pricing Asian and Basket Options Via Taylor Expansion”,
Journal of Computational Finance, Vol. 5, 2002.

See Also basketstockspec | basketsensbyju

How To + “Basket Option” on page 3-25

6-29

basketbyls

6-30

Purpose

Syntax

Description

Input
Arguments

Price basket options using Longstaff-Schwartz model

Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, ExerciseDates)

Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike,
Settle, ExerciseDates, ’ParameterName’, ParameterValue ...)

Price = basketbyls(RateSpec, BasketStockSpec, OptSpec,
Strike, Settle, ExerciseDates) prices basket options using the
Longstaff-Schwartz model.

Price = basketbyls(RateSpec, BasketStockSpec, OptSpec,
Strike, Settle, ExerciseDates, ’ParameterName’,
ParameterValue ...) accepts optional inputs as one or more
comma-separated parameter/value pairs. ’ParameterName’ is the name
of the parameter inside single quotes. ’ParameterValue is the value
corresponding to ’ParameterName’. Specify parameter-value pairs in
any order. Names are case-insensitive and partial string matches are
allowable, if no ambiguities exist.

RateSpec

Annualized, continuously compounded rate term structure. For
more information on the interest rate specification, see intenvset.

BasketStockSpec

BasketStock specification. For information on the basket of
stocks specification, see basketstockspec.

OptSpec

String or 2-by-1 cell array of the strings 'call' or 'put’.
Strike

The option strike price:

¢ For a European or Bermuda option, Strike is a scalar
(European) or 1-by-NSTRIKES (Bermuda) vector of strike price.

basketbyls

® For an American option, Strike is a scalar vector of the strike
price.
Settle

Scalar of the settlement or trade date specified as a string or
serial date number.

ExerciseDates
The exercise date for the option:
¢ For a European or Bermuda option, ExerciseDates is a 1-by-1
(European) or 1-by-NSTRIKES (Bermuda) vector of exercise

dates. For a European option, there is only one ExerciseDate
on the option expiry date.

¢ For an American option, ExerciseDates is a 1-by-2 vector of
exercise date boundaries. The option exercises on any date
between, or including, the pair of dates on that row. If there
1s only one non-NaN date, or if ExerciseDates is 1-by-1, the
option exercises between the Settle date and the single listed
ExerciseDate.

Parameter-Value Pairs

AmericanOpt

Parameter values are a scalar flag.

® 0 — European/Bermuda

e 1 — American

Default: 0

NumPeriods

6-31

basketbyls

Output
Arguments

Examples

6-32

Parameter value is a scalar number of simulation periods per trial.
NumPeriods is considered only when pricing European basket
options. For American and Bermuda basket options, NumPeriod
equals the number of exercise days during the life of the option.

Default: 100

NumTrials

Parameter value is a scalar number of independent sample paths
(simulation trials).

Default: 1000

Price

Price of the basket option.

Find an American call basket option of three stocks. The stocks are
currently trading at $35, $40 and $45 with annual volatilities of 12%,
15% and 18%, respectively. The basket contains 33.33% of each stock.
Assume the correlation between all pair of assets is 50%. On May 1,
2009, an investor wants to buy a three-year call option with a strike
price of $42. The current annualized continuously compounded interest
rate is 5%. Use this data to compute the price of the call basket option
using the Longstaff-Schwartz model.

Settle = 'May-1-2009';
Maturity = 'May-1-2012';

% Define RateSpec

Rate = 0.05;

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates',...

Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric,

% and have ones along the main diagonal.

basketbyls

References

See Also

Corr = [1 0.50 0.50; 0.50 1 0.50;0.50 0.50 1];

% Define BasketStockSpec

AssetPrice = [35;40;45];

Volatility = [0.12;0.15;0.18];

Quantity = [0.333;0.333;0.333];

BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr)

% Compute the price of the call basket option

OptSpec = {'call'};

Strike = 42;

AmericanOpt = 1; % American option

Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,...

'AmericanOpt',AmericanOpt)
This returns:
Price =
5.60499

Increase the number of simulation trials to 2000 to give the following
results:

NumTrial = 2000;
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,...
'AmericanOpt',AmericanOpt, 'NumTrials',NumTrial)

Price =

5.6665

Longstaff, F.A., and E.S. Schwartz, “Valuing American Options
by Simulation: A Simple Least-Squares Approach”, The Review of
Financial Studies, Vol. 14, No. 1, Spring 2001, pp. 113-147.

basketstockspec | basketsensbyls

6-33

basketbyls

How To + “Basket Option” on page 3-25

6-34

basketsensbyju

Purpose

Syntax

Description

Input
Arguments

Calculate European basket options price and sensitivities using Nengjiu
Ju approximation model

PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec,
Strike,

Settle, Maturity)

PriceSens = basketsensbyju(RateSpec, BasketStockSpec, OptSpec,
Strike,

Settle, Maturity, ’ParameterName’, ParameterValue ...)

PriceSens = basketsensbyju(RateSpec, BasketStockSpec,
OptSpec, Strike, Settle, Maturity) calculates prices and
sensitivities for basket options using the Nengjiu Ju approximation
model.

PriceSens = basketsensbyju(RateSpec, BasketStockSpec,
OptSpec, Strike, Settle, Maturity, ’ParameterName’,
ParameterValue ...) accepts optional inputs as one or more
comma-separated parameter/value pairs. ’ParameterName’ is the name
of the parameter inside single quotes. ’ParameterValue is the value
corresponding to ’ParameterName’. Specify parameter-value pairs in
any order. Names are case-insensitive and partial string matches are
allowable, if no ambiguities exist.

RateSpec

Annualized, continuously compounded rate term structure. For
more information on the interest rate specification, see intenvset.

BasketStockSpec

BasketStock specification. For information on the basket of
stocks specification, see basketstockspec.

OptSpec
String or 2-by-1 cell array of the strings 'call' or 'put’.
Strike

6-35

basketsensbyju

Scalar of the option strike price.

Settle

Scalar of the settlement or trade date specified as a string or
serial date number.

Maturity

Maturity date, specified as a string or serial date number.

Parameter-Value Pairs

OutSpec

Parameter value is an NOUT-by-1 or 1-by-NOUT cell array of
strings indicating the nature and order of the outputs for the
function. Possible values are 'Price', 'Delta’', 'Gamma', 'Vega',
'Lambda’', 'Rho', 'Theta', and 'All'. For example, OutSpec =
{'Price', 'Lamba', 'Rho'} specifies that the output is Price,
Lambda, and Rho, in that order.

OutSpec = {'All'} specifies that the output should be Delta,
Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This
is the same as specifying OutSpec as OutSpec = {'Delta’,
‘Gamma', 'Vega', 'Lambda‘', 'Rho', 'Theta', 'Price'};.

Default: OutSpec = {'Price"'}

undIdx

Scalar of the indice of the underlying instrument to compute the
sensitivity.

Default: UndIdx =[]

Output PriceSens

Arguments

6-36

Expected prices or sensitivities values for the basket option.

basketsensbyju

Examples

Find a European call basket option of five stocks. Assume that the
basket contains:

® 5% of the first stock trading at $110

® 15% of the second stock trading at $75

e 20% of the third stock trading at $40

® 25% of the fourth stock trading at $125

® 35% of the fifth stock trading at $92

These stocks have annual volatilities of 20% and the correlation

between the assets i1s zero. On May 1, 2009, an investor wants to buy a
1-year call option with a strike price of $90. The current annualized,
continuously compounded interest 1s 5%. Use this data to compute price

and delta of the call basket option with the Ju approximation model.

Settle = 'May-1-2009';
Maturity = 'May-1-2010';

% Define RateSpec

Rate = 0.05;

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates’,

Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric, and
% have ones along the main diagonal.

NumInst = 5;

InstIdx = ones(NumInst,1);

Corr = diag(ones(5,1), 0);

% Define BasketStockSpec

AssetPrice = [110; 75; 40; 125; 92];

Volatility = 0.2;

Quantity = [0.05; 0.15; 0.2; 0.25; 0.35];

BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

6-37

basketsensbyju

% Compute the price of the call basket option. Calculate also the delta

% of the first stock.

OptSpec = {'call'};

Strike = 90;

OutSpec = {'Price', 'Delta'};

UndIdx = 1; % First element in the basket

[Price, Delta] = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle,
Maturity, 'OutSpec', OutSpec, 'UndIdx', UndIdx)

This returns:
Price =
5.16098
Delta =
0.02972

Compute Delta with respect to the second asset:

UndIdx = 2; % Second element in the basket

OutSpec = {'Delta'};

Delta = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,
'OutSpec',OutSpec, 'UndIdx',UndIdx)

Delta =
0.09063
References Nengjiu Ju, “Pricing Asian and Basket Options Via Taylor Expansion”,
Journal of Computational Finance, Vol. 5, 2002.
See Also basketstockspec | basketbyju
How To + “Basket Option” on page 3-25

6-38

basketsensbyls

Purpose

Syntax

Description

Input
Arguments

Calculate price and sensitivities for basket options using
Longstaff-Schwartz model

PriceSens = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,
Strike,

Settle, ExerciseDates)

PriceSens = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,
Strike,

Settle, ExerciseDates, ’ParameterName’, ParameterValue ...)

PriceSens = basketsensbyls(RateSpec, BasketStockSpec,
OptSpec, Strike, Settle, ExerciseDates) prices basket options
using the Longstaff-Schwartz model.

PriceSens = basketsensbyls(RateSpec, BasketStockSpec,
OptSpec, Strike, Settle, ExerciseDates, ’ParameterName’,
ParameterValue ...) accepts optional inputs as one or more
comma-separated parameter/value pairs. ’ParameterName’ is the name
of the parameter inside single quotes. ’ParameterValue is the value
corresponding to ’ParameterName’. Specify parameter-value pairs in
any order. Names are case-insensitive and partial string matches are
allowable, if no ambiguities exist.

RateSpec

Annualized, continuously compounded rate term structure. For
more information on the interest rate specification, see intenvset.

BasketStockSpec

BasketStock specification. For information on the basket of
stocks specification, see basketstockspec.

OptSpec
String or 2-by-1 cell array of the strings 'call' or 'put’.
Strike

The option strike price:

6-39

basketsensbyls

¢ For a European or Bermuda option, Strike is a scalar
(European) or 1-by-NSTRIKES (Bermuda) vector of strike price.

¢ For an American option, Strike is a scalar vector of strike price.

Settle
Scalar of settlement or trade date.
ExerciseDates
The exercise date for the option:
¢ For a European or Bermuda option, ExerciseDates is a 1-by-1
(European) or 1-by-NSTRIKES (Bermuda) vector of exercise

dates. For a European option, there is only one ExerciseDate
on the option expiry date.

¢ For an American option, ExerciseDates is a 1-by-2 vector of
exercise date boundaries. The option exercises on any date
between or including the pair of dates on that row. If there
1s only one non-NaN date, or if ExerciseDates is 1-by-1, the
option exercises between the Settle date and the single listed
ExerciseDate.

Parameter-Value Pairs

AmericanOpt

Parameter values are a scalar flag.

® 0 — European/Bermuda

e 1 — American

Default: 0

NumPeriods

6-40

basketsensbyls

Parameter value is a scalar number of simulation periods.
NumPeriods is considered only when pricing European basket
options. For American and Bermuda basket options, NumPeriod
equals the number of exercise days during the life of the option.

Default: 100

NumTrials

Parameter value is a scalar number of independent sample paths
(simulation trials).

Default: 1000

OQutSpec

Parameter value is an NOUT-by-1 or 1-by-NOUT cell array of
strings indicating the nature and order of the outputs for the
function. Possible values are 'Price', 'Delta’', 'Gamma', 'Vega',
'Lambda’', 'Rho', 'Theta', and 'All'. For example, OutSpec =
{'Price', 'Lamba', 'Rho'} specifies that the output is Price,
Lambda, and Rho, in that order.

OutSpec = {'All'} specifies that the output should be Delta,
Gamma, Vega, Lambda, Rho, Theta, and Price, in that order. This
1s the same as specifying OutSpec as OutSpec = {'Delta',
'Gamma', 'Vega', 'Lambda‘', 'Rho', 'Theta', 'Price'};.

Default: OutSpec = {'Price'}

undIdx

Scalar of the indice of the underlying instrument to compute the
sensitivity.

Default: UndIdx =[]

6-41

basketsensbyls

Output PriceSens

Arguments Expected prices or sensitivities values.

Examples Find a European put basket option of two stocks. The basket contains
50% of each stock. The stocks are currently trading at $90 and $75, with
annual volatilities of 15%. Assume that the correlation between the
assets is zero. On May 1, 2009, an investor wants to buy a one-year put
option with a strike price of $80. The current annualized, continuously
compounded interest is 5%. Use this data to compute price and delta
of the put basket option with the Longstaff-Schwartz approximation
model.

Settle = 'May-1-2009';
Maturity = 'May-1-2010';

% Define RateSpec

Rate = 0.05;

Compounding = -1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates',...

Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric,
% and have ones along the main diagonal.

NumInst = 2;

InstIdx = ones(NumInst,1);

Corr = diag(ones(NumInst,1), 0);

% Define BasketStockSpec

AssetPrice = [90; 75];

Volatility = 0.15;

Quantity = [0.50; 0.50];

BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

% Compute the price of the put basket option. Calculate also the delta

% of the first stock.
OptSpec = {'put'};

6-42

basketsensbyls

Strike = 80;
OutSpec = {'Price', 'Delta'};
UndIdx = 1; % First element in the basket

[PriceSens, Delta] = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,...
Strike, Settle, Maturity, 'OutSpec', OutSpec, 'UndIdx', UndIdx)

This returns:

PriceSens =
1.08519
Delta =
-0.10311
Compute the Price and Delta of the basket with a correlation of -20%:
NewCorr = [1 -0.20; -0.20 11;

% Define the new BasketStockSpec.
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, NewCorr);

% Compute the price and delta of the put basket option.
[PriceSens, Delta] = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,...
Strike, Settle, Maturity, 'OutSpec', OutSpec, 'UndIdx', UndIdx)
PriceSens =
0.83903

Delta =

-0.08847

6-43

basketsensbyls

6-44

References

See Also

How To

Longstaff, F.A., and E.S. Schwartz, “Valuing American Options
by Simulation: A Simple Least-Squares Approach”, The Review of
Financial Studies,Vol. 14, No. 1, Spring 2001, pp. 113-147.

basketstockspec | basketbyls

+ “Basket Option” on page 3-25

basketstockspec

Purpose

Syntax

Description

Input
Arguments

Specify basket stock structure

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity,
Correlation)

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity,
Correlation, ’ParameterName’,ParameterValue ...)

BasketStockSpec = basketstockspec(Sigma, AssetPrice,
Quantity, Correlation) creates a basket stock structure.

BasketStockSpec = basketstockspec(Sigma, AssetPrice,
Quantity, Correlation, ’ParameterName’,ParameterValue

.) accepts optional inputs as one or more comma-separated
parameter/value pairs. ’ParameterName’ is the name of the parameter
inside single quotes. ’ParameterValue is the value corresponding to
’ParameterName’. Specify parameter-value pairs in any order. Names
are case-insensitive and partial string matches are allowable, if no
ambiguities exist.

Sigma

NINST-by-1 vector of decimal annual price volatility of the
underlying security.

AssetPrice
NINST-by-1 vector of underlying asset price values at time 0.
Quantity

NINST-by-1 vector of quantities of the instruments contained in
the basket.

Correlation

NINST-by-NINST matrix of correlation values.

Parameter-Value Pairs

DividendAmounts

6-45

basketstockspec

NINST-by-1 cell array specifying the dividend amounts for basket
instruments. Each element of the cell array is a 1-by-NDIV row
vector of cash dividends or a scalar representing a continuous
annualized dividend yield for the corresponding instrument.

DividendType

NINST-by-1 cell array of strings specifying each stock’s dividend
type. Dividend type must be either cash for actual dollar
dividends or continuous for continuous dividend yield. .

ExDividendDates

NINST-by-1 cell array specifying the ex-dividend dates for
the basket instruments. Each row is a 1-by-NDIV matrix of
ex-dividend dates for cash type. For rows that correspond to
basket instruments with continuous dividend type, the cell
is empty. If none of the basket instruments pay continuous
dividends, do not specify ExDividendDates.

Output BasketStockSpec
Arguments Structure encapsulating the properties of a basket stock structure.
Examples Find a basket option of three stocks. The stocks are currently trading

at $56, $92 and $125 with annual volatilities of 20%, 12% and 15%,
respectively. The basket option contains 25% of the first stock, 40%

of the second stock, and 35% of the third. The first stock provides a
continuous dividend of 1%, while the other two provide no dividends.
The correlation between the first and second asset is 30%, between the
second and third asset 11%, and between the first and third asset 16%.
Use this data to create the BasketStockSpec structure:

AssetPrice = [56;92;125];
Sigma = [0.20;0.12;0.15];

% Create the Correlation matrix. Correlation matrices are symmetric and

% have ones along the main diagonal.
NumInst = 3;

6-46

basketstockspec

Corr = zeros(NumInst,1);

corr(1,2) = .30;

corr(2,3) = .11;

Ccorr(1,3) .16;

Corr = triu(Corr,1) + tril(Corr',-1) + diag(ones(NumInst,1), 0);

% Define dividends

DivType = cell(NumInst,1);
DivType{1}="'continuous';
DivAmounts = cell(NumInst,1);
DivAmounts{1} = 0.01;

Quantity = [0.25; 0.40; 0.35];

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Corr, ...
'‘DividendType', DivType, 'DividendAmounts', DivAmounts)

This returns:

BasketStockSpec =

FinObj: 'BasketStockSpec'

Sigma: [3x1 double]

AssetPrice: [3x1 double]

Quantity: [3x1 double]

Correlation: [3x3 double]
DividendType: {3x1 cell}
DividendAmounts: {3x1 cell}
ExDividendDates: {3x1 cell}

Examine the BasketStockSpec structure:

>>BasketStockSpec.Correlation
ans =

1.0000 0.3000 0.1600
0.3000 1.0000 0.1100

6-47

basketstockspec

6-48

0.1600 0.1100

Find a basket option of two stocks. The stocks are currently trading at
$60 and $55 with volatilities of 30% per annum. The basket option
contains 50% of each stock. The first stock provides a cash dividend of
$0.25 on May 1, 2009 and September 1, 2009. The second stock provides
a continuous dividend of 3%. The correlation between the assets is 40%.
Use this data to create the structure BasketStockSpec:

AssetPrice = [60;55];
Sigma = [0.30;0.30]

% Create the Correlation matrix. Correlation matrices are symmetric and
% have ones along the main diagonal.
Correlation = [1 0.40;0.40

% Define dividends

NumInst = 2;

DivType = cell(NumInst,1);

DivType{1}="cash';
DivType{2}='continuous';

115

DivAmounts = cell(NumInst,1);

DivAmounts{1} = [0.25 0.25];

DivAmounts{2} = 0.03;

ExDates = cell(NumInst,1);
ExDates{1} = {'May-1-2009'

Quantity = [0.5; 0.50];

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation,

‘DividendType', DivType,

This returns:

'Sept-1-2009'};

'DividendAmounts', DivAmounts,

'ExDividendDates',ExDates)

basketstockspec

BasketStockSpec =

FinObj: 'BasketStockSpec'

Sigma: [2x1 double]

AssetPrice: [2x1 double]

Quantity: [2x1 double]

Correlation: [2x2 double]
DividendType: {2x1 cell}
DividendAmounts: {2x1 cell}
ExDividendDates: {2x1 cell}

Examine the BasketStockSpec structure:

>>BasketStockSpec.DividendType

ans =
‘cash’
‘continuous’
See Also basketbyls | basketbyju | basketsensbyju | basketsensbyls |

stockspec | intenvset

How To + “Basket Option” on page 3-25

6-49

bdtprice

Purpose Instrument prices from BDT interest-rate tree
Syntax [Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)
Arguments
BDTTree Interest-rate tree structure created by bdttree.
InstSet Variable containing a collection of NINST instruments.

Instruments are categorized by type. Each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)
computes arbitrage-free prices for instruments using an interest-rate
tree created with bdttree. All instruments contained in a financial
instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for
each instrument. The prices are computed by backward dynamic
programming on the interest-rate tree. If an instrument cannot be
priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation
times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.

bdtprice handles instrument types: 'Bond', 'CashFlow', 'OptBond"',
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd
to construct defined types.

6-50

bdtprice

Examples

Related single-type pricing functions are:

® pondbybdt: Price a bond from a BDT tree.

® capbybdt: Price a cap from a BDT tree.

e cfbybdt: Price an arbitrary set of cash flows from a BDT tree.

e fixedbybdt: Price a fixed-rate note from a BDT tree.

e floatbybdt: Price a floating-rate note from a BDT tree.

e floorbybdt: Price a floor from a BDT tree.

e optbndbybdt: Price a bond option from a BDT tree.

e optembndbybdt: Price a bond with embedded option by a BDT tree.
® swapbybdt: Price a swap from a BDT tree.

® swaptionbybdt: Price a swaption from a BDT tree.

Load the BDT tree and instruments from the data file deriv.mat. Price
the cap and bond instruments contained in the instrument set.

load deriv.mat;
BDTSubSet = instselect(BDTInstSet, 'Type', {'Bond', 'Cap'});

instdisp(BDTSubSet)

Index Type CouponRate Settle Maturity Period Name ...
1 Bond 0.1 01-Jan-2000 01-Jan-2003 1 10% bond
2 Bond 0.1 01-Jan-2000 01-Jan-2004 2 10% bond
Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.15 01-Jan-2000 01-Jan-2004 1 15% Cap

[Price, PriceTree] = bdtprice(BDTTree, BDTSubSet);

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

6-51

bdtprice

Price =
95.5030
93.9079

1.4863

You can use treeviewer to see the prices of these three instruments
along the price tree.

6-52

bdtprice

See Also

=101 =101
Do Gt Yow fuet Jook Wndow beb B &t You fuet Jook Window | b
Selection Viuskanion Selecten Visbzation
 Poh Tatie = Pat £ Tablo
" Node and Cridren = Disgram 1 Noda and Chidren = Disgram
Pt Pt
._ﬂ_.,.»"_" Insvument. 162 Rl - '..m_.’_,a—o Inomert [10 fored -
a0 P
y __\ \O_0 VAN /\;_0
o < X
e ~ ® 955 L ./ » a1
el .
o o > o
o 1 2 E 4 o 1 2 E 4
Hep | o Hep | oo

First 10% Bond (Maturity 2003)

Second 10% Bond (Maturity 2004)

=l0 x|
B G Wew Dot [ook e beb
Seleckon WVissashe hon
= Pan = Table
" Node and Chiden 7 Disgram
Pk
© feobmert: 155 Con -
p O
«
Y
e CRN]
o
e °
o 1 7 3 4
B - |
15% Cap

bdtsens, bdttree, instadd, intenvprice, intenvsens

6-53

bdtsens

6-54

Purpose

Syntax

Arguments

Description

Instrument prices and sensitivities from BDT interest-rate tree

[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet,
Options)

BDTTree Interest-rate tree structure created by bdttree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type. Each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

Options (Optional) Derivatives pricing options structure created
with derivset.

[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, InstSet,
Options) computes instrument sensitivities and prices for instruments
using an interest-rate tree created with the bdttree function. NINST
instruments from a financial instrument variable, InstSet, are priced.
bdtsens handles instrument types: 'Bond', 'CashFlow', 'OptBond’,
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd
for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change
of instrument prices with respect to changes in the interest rate. Delta
is computed by finite differences in calls to bdttree. See bdttree for
information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of
change of instrument deltas with respect to the changes in the interest
rate. Gamma is computed by finite differences in calls to bdttree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change
of instrument prices with respect to the changes in the volatility

bdtsens

Examples

o(t,T). Vega is computed by finite differences in calls to bdttree. See
bdtvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices
are computed by backward dynamic programming on the interest-rate
tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points.

Vega is calculated based on a 1% shift in the volatility process.

Load the tree and instruments from a data file. Compute Delta and

Gamma for the cap and bond instruments contained in the instrument set.

load deriv.mat;
BDTSubSet = instselect(BDTInstSet, 'Type', {'Bond', 'Cap'});

instdisp(BDTSubSet)

Index Type CouponRate Settle Maturity Period Name

1 Bond 0.1 01-Jan-2000 01-Jan-2003 1 10% Bo
nd

2 Bond 0.1 01-Jan-2000 01-Jan-2004 2 10% Bo
nd

Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.15 01-Jan-2000 01-Jan-2004 1 15% Cap

[Delta, Gamma] = bdtsens(BDTTree, BDTSubSet)

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

6-55

bdtsens

Delta =
-232.6681
-281.0517

78.3776

Gamma =

1.0e+003 *
0.8037

1.1819
0.7490

See Also bdtprice, bdttree, bdtvolspec, instadd

6-56

bdttimespec

Purpose Specify time structure for BDT interest-rate tree
Syntax TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)
Arguments

ValuationDate Scalar date marking the pricing date and first

Maturity

Compounding

observation in the tree. Specify as serial date
number or date string.

Number of levels (depth) of the tree. A number
of levels (NLEVELS)-by-1 vector of dates marking
the cash flow dates of the tree. Cash flows with
these maturities fall on tree nodes. Maturity
should be in increasing order.

(Optional) Scalar value representing the rate at
which the input zero rates were compounded
when annualized. Default = 1. This argument
determines the formula for the discount factors:
Compounding =1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)"(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T =
F is 1 year.

Compounding = 365

Disc = (1 + Z/F)"(-T), where F is the number
of days in the basis year and T is a number of
days elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

6-57

bdttimespec

Description TimeSpec = bdttimespec(ValuationDate, Maturity,
Compounding) sets the number of levels and node times for a BDT tree
and determines the mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for bdttree. The
state observation dates are [ValuationDate; Maturity(1:end-1)].
Because a forward rate is stored at the last observation, the tree can
value cash flows out to Maturity.

Examples Specify a five-period tree with annual nodes. Use annual compounding
to report rates.

Compounding = 1;

ValuationDate = '01-01-2000"';

Maturity = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004"'; '01-01-2005'];

TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)
TimeSpec =
FinObj: 'BDTTimeSpec'
ValuationDate: 730486
Maturity: [5x1 double]
Compounding: 1

Basis: 0
EndMonthRule: 1

See Also bdttree, bdtvolspec

6-58

bdttree

Purpose
Syntax

Arguments

Description

Examples

Construct BDT interest-rate tree

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

VolSpec Volatility process specification. See bdtvolspec for
information on the volatility process.

RateSpec Interest-rate specification for the initial rate curve.
See intenvset for information on declaring an
interest-rate variable.

TimeSpec Tree time layout specification. Defines the observation
dates of the BDT tree and the Compounding rule for
date to time mapping and price-yield formulas. See
bdttimespec for information on the tree structure.

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec) creates
a structure containing time and interest-rate information on a
recombining tree.

Using the data provided, create a BDT volatility specification (VolSpec),
rate specification (RateSpec), and tree time layout specification
(TimeSpec). Then use these specifications to create a BDT tree with
bdttree.

Compounding = 1;
ValuationDate = '01-01-2000"';
StartDate = ValuationDate;

EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'1];

Rates = [.1; .11; .12; .125; .13];

Volatility = [.2; .19; .18; .17; .16];

RateSpec = intenvset('Compounding', Compounding,...

6-59

bdttree

'ValuationDate', ValuationDate,...
‘StartDates', StartDate,...
'EndDates', EndDates,...

'Rates', Rates);

BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Use treeviewer to observe the tree you have created.

treeviewer (BDTTree)
<) Tree Yiewer : 10l =|
File Edit Yiew Insert Tools Window Help
r Tree Visualization
; ; ; ; ; Selection Wisualization
&+ Path Table
" MNode and Children ' Diagram
" Plat
1.1
1.11
A2
1.14
1.14
0 1 2 3 4
Help Cloze
See Also bdtprice, bdttimespec, bdtvolspec, intenvset

6-60

bdtvolspec

Purpose

Syntax

Arguments

Description

Examples

Specify BDT interest-rate volatility process

Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve,

InterpMethod)

ValuationDate

VolDates

VolCurve

InterpMethod

Scalar value representing the observation date
of the investment horizon.

Number of points (NPOINTS)-by-1 vector of yield
volatility end dates.

NPOINTS-by-1 vector of yield volatility values in
decimal form.

(Optional) Interpolation method. Default is
'linear'. See interp1 for more information.

Volspec = bdtvolspec(ValuationDate, VolDates, VolCurve,
InterpMethod) creates a structure specifying the volatility for

bdttree.

Using the data provided, create a BDT volatility specification (VolSpec).

ValuationDate = '01-01-2000"';

EndDates = ['01-01-2001"'; '01-01-2002";
'01-01-2004'; '01-01-2005'];
Volatility = [.2; .19; .18; .17; .16];

BDTVolSpec = bdtvolspec(ValuationDate,

BDTVolSpec =

FinObj:
ValuationDate:
VolDates:
VolCurve:

'BDTVolSpec'
730486

[5x1 double]
[5x1 double]

'01-01-2003";

EndDates, Volatility)

6-61

bdtvolspec

VolInterpMethod: 'linear’

See Also bdttree, interp1

6-62

bkprice

Purpose
Syntax

Arguments

Description

Instrument prices from Black-Karasinski interest-rate tree

[Price, PriceTree] = bkprice(BKTree, InstSet, Options)

BKTree Interest-rate tree structure created by bktree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type. Each type can
have different data fields. The stored data field is a row
vector or string for each instrument.

Options (Optional) Derivatives pricing options structure created
with derivset.

[Price, PriceTree] = bkprice(BKTree, InstSet, Options)
computes arbitrage-free prices for instruments using an interest-rate
tree created with bktree. All instruments contained in a financial
instrument variable, InstSet, are priced.

Price is a number of instruments (NINST)-by-1 vector of prices for
each instrument. The prices are computed by backward dynamic
programming on the interest-rate tree. If an instrument cannot be
priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation
times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.

bkprice handles instrument types: 'Bond', 'CashFlow', 'OptBond"',
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd
to construct defined types.

6-63

bkprice

6-64

Examples

Related single-type pricing functions are:

® pondbybk: Price a bond from a Black-Karasinski tree.
® capbybk: Price a cap from a Black-Karasinski tree.

e cfbybk: Price an arbitrary set of cash flows from a Black-Karasinski
tree.

e fixedbybk: Price a fixed-rate note from a Black-Karasinski tree.

e floatbybk: Price a floating-rate note from a Black-Karasinski tree.
e floorbybk: Price a floor from a Black-Karasinski tree.

® optbndbybk: Price a bond option from a Black-Karasinski tree.

® optembndbybk: Price a bond with embedded option by a
Black-Karasinski tree.

® swapbybk: Price a swap from a Black-Karasinski tree.

® swaptionbybk: Price a swaption from a Black-Karasinski tree.

Load the BK tree and instruments from the data file deriv.mat. Price
the cap and bond instruments contained in the instrument set.

load deriv.mat;
BKSubSet = instselect(BKInstSet, 'Type', {'Bond', 'Cap'});

instdisp(BKSubSet)

Index Type CouponRate Settle Maturity Period Name ...
1 Bond 0.03 01-Jan-2004 01-Jan-2007 1 3% bond
2 Bond 0.03 01-Jan-2004 01-Jan-2008 2 3% bond
Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.04 01-Jan-2004 01-Jan-2008 1 4% Cap

[Price, PriceTree] = bkprice(BKTree, BKSubSet);

bkprice

Price =

98.1096
95.6734
2.2706

You can use treeviewer to see the prices of these three instruments
along the price tree.

treeviewer (PriceTree, BKSubSet)

6-65

bkprice

=10l [e =loix
-

Fle Lt W dnest Took Deshtop Windew Hep - Fls [t Wew st Tock Deskiop Windew Heb
Selection Vinsization ‘Selection Vinuskzaton
= Puh 1 Table = Pt 1 Table
1 Mede ol Cridren 1 Diagram ™ Mot ol Cribren 1 Diagram
it Pt

Fetumert [bond - vt a5

o 1 2 3 4 - — o 1 2 3 A — —
First 3% Bond (Maturity 2007) Second 3% Bond (Maturity 2008)
=il
Fle Edt View Insert Took Destop Window Hel »
:znﬂlﬂm E::-u
CRE T T T " =
4% Cap
See Also bksens, bktree, instadd, intenvprice, intenvsens

6-66

bksens

Purpose
Syntax

Arguments

Description

Instrument prices and sensitivities from Black-Karasinski interest-rate
tree

[Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet,
Options)

BKTree Interest-rate tree structure created by bktree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type. Each type can have
different data fields. The stored data field is a row vector
or string for each instrument.

Options (Optional) Derivatives pricing options structure created
with derivset.

[Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet,
Options) computes instrument sensitivities and prices for instruments
using an interest-rate tree created with the bktree function. NINST
instruments from a financial instrument variable, InstSet, are priced.
bksens handles instrument types: 'Bond', 'CashFlow', 'OptBond’,
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd
for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change
of instrument prices with respect to changes in the interest rate. Delta
is computed by finite differences in calls to bktree. See bktree for
information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of
change of instrument deltas with respect to the changes in the interest
rate. Gamma is computed by finite differences in calls to bktree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change of

instrument prices with respect to the changes in the volatility © (¢,T).

6-67

bksens

6-68

Examples

Vega is computed by finite differences in calls to bktree. See bkvolspec
for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices
are computed by backward dynamic programming on the interest-rate
tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points.
Vega is calculated based on a 1% shift in the volatility process.

Load the tree and instruments from a data file. Compute Delta and
Gamma for the cap and bond instruments contained in the instrument set.

load deriv.mat;
BKSubSet = instselect(BKInstSet, 'Type', {'Bond', 'Cap'});

instdisp(BKSubSet)

Index Type CouponRate Settle Maturity Period Name

1 Bond 0.03 01-Jan-2004 01-Jan-2007 1 3% Bon
d

2 Bond 0.03 01-Jan-2004 01-Jan-2008 1 3% Bon
d

Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.04 01-Jan-2004 01-Jan-2008 1 4% Cap

[Delta, Gamma] = bksens(BKTree, BKSubSet)

Delta =

bksens

-285.7151
-365.7048
189.5319
Gamma =
1.0e+003 *
0.8456

1.4345
6.9999

See Also bkprice, bktree, bkvolspec, instadd

6-69

bktimespec

Purpose Specify time structure for Black-Karasinski tree
Syntax TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)
Arguments

ValuationDate Scalar date marking the pricing date and first

Maturity

Compounding

6-70

observation in the tree. Specify as a serial date
number or date string.

Number of levels (depth) of the tree. A number
of levels (NLEVELS)-by-1 vector of dates marking
the cash flow dates of the tree. Cash flows with
these maturities fall on tree nodes. Maturity
should be in increasing order.

(Optional) Scalar value representing the rate at
which the input zero rates were compounded
when annualized. Default = -1 (continuous
compounding). This argument determines the
formula for the discount factors:

Compounding =1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)"(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T =
F is 1 year.

Compounding = 365

Disc = (1 + Z/F)"(-T), where F is the number
of days in the basis year and T is a number of
days elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

bktimespec

Description TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)
sets the number of levels and node times for an BK tree and determines
the mapping between dates and time for rate quoting.

TimeSpec is a structure specifying the time layout for bktree. The
state observation dates are [Settle; Maturity(1:end-1)]. Because a
forward rate is stored at the last observation, the tree can value cash
flows out to Maturity.

Examples Specify a four-period tree with annual nodes. Use annual compounding
to report rates.

ValuationDate = 'Jan-1-2004';

Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006';
'12-31-2007'];

Compounding = 1;

TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)

TimeSpec =

FinObj: 'BKTimeSpec'
ValuationDate: 731947
Maturity: [4x1 double]
Compounding: 1
Basis: 0
EndMonthRule: 1

See Also bktree, bkvolspec, hwtree

6-71

bkiree

6-72

Purpose
Syntax

Arguments

Description

Examples

Construct Black-Karasinski interest-rate tree

BKTree = bktree(VolSpec, RateSpec, TimeSpec)

VolSpec Volatility process specification. See bkvolspec for
information on the volatility process.

RateSpec Interest-rate specification for the initial rate curve.
See intenvset for information on declaring an
interest-rate variable.

TimeSpec Tree time layout specification. Defines the observation
dates of the BK tree and the Compounding rule for
date to time mapping and price-yield formulas. See
bktimespec for information on the tree structure.

BKTree = bktree(VolSpec, RateSpec, TimeSpec) creates a structure
containing time and interest-rate information on a recombining tree.

Using the data provided, create a BK volatility specification (VolSpec),
rate specification (RateSpec), and tree time layout specification
(TimeSpec). Then use these specifications to create a BK tree using
bktree.

Compounding = -1;

ValuationDate = '01-01-2004"';

StartDate = ValuationDate;

VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006"';
'12-31-2007"'1];

VolCurve = 0.01;

AlphaDates = '01-01-2008";

AlphaCurve = 0.1;

Rates = [0.0275; 0.0312; 0.0363; 0.0415];

bktree

BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve);

RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
‘StartDates', ValuationDate,...

'EndDates', VolDates,...
'Rates', Rates);

BKTimeSpec = bktimespec(ValuationDate, VolDates, Compounding);

BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec)

BKTree

FinObj: 'BKFwdTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.9973 1.9973 2.9973]
dObs: [731947 732312 732677 733042]
CFlowT: {[4x1 double] [3x1 double] [2x1 double]

Probs: {[3x1 double] [3x3 double] [3x5 double]}

Connect: {[2] [2 3 4] [2 2 3 4 4]}
FwdTree: {1x4 cell}

Use treeviewer to observe the tree you have created.

treeviewer (BKTree)

6-73

bkiree

See Also

6-74

=]
File Edit Wiew Insert Tools Desktop Window Help N
r Tree Yisualization
Selection Wisualization
* Path = Tahle
= Mode and Children {+ Diagram
= Plat
1.06
04
1.05
1.03
03
1.06
Help Close

bkprice, bktimespec, bkvolspec, intenvset

bkvolspec

Purpose

Syntax

Arguments

Description

Examples

Specify Black-Karasinski interest-rate volatility process

Volspec = bkvolspec(ValuationDate, VolDates, VolCurve,
AlphaDates, AlphaCurve, InterpMethod)

ValuationDate

VolDates

VolCurve

AlphaDates

AlphaCurve

InterpMethod

Scalar value representing the observation date
of the investment horizon.

Number of points (NPOINTS)-by-1 vector of yield
volatility end dates.

NPOINTS-by-1 vector of yield volatility values in
decimal form.

NPOINTS-by-1 vector of mean reversion end
dates.

NPOINTS-by-1 vector of positive mean reversion
values in decimal form.

(Optional) Interpolation method. Default is
'linear'. See interp1 for more information.

Volspec = bkvolspec(ValuationDate, VolDates, VolCurve,
AlphaDates, AlphaCurve, InterpMethod) creates a structure
specifying the volatility for bktree.

Using the data provided, create a Black-Karasinski volatility
specification (VolSpec).

ValuationDate =

'01-01-2004";

StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006';

'12-31-2007'];

VolCurve = 0.01;

AlphaDates = '01-01-2008";

6-75

bkvolspec

AlphaCurve = 0.1;

BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...

AlphaDates, AlphaCurve)
BKVolSpec =

FinObj: 'BKVolSpec'
ValuationDate: 731947
VolDates: [4x1 double]
VolCurve: [4x1 double]
AlphaCurve: 0.1000
AlphaDates: 733408
VolInterpMethod: 'linear’

See Also bktree, interp1

6-76

bondbybdt

Purpose

Syntax

Arguments

Price bond from BDT interest-rate tree

[Price, PriceTree]

bondbybdt (BDTTree, CouponRate, Settle,

Maturity, Period, Basis, EndMonthRule, IssueDate,

FirstCouponDate,

BDTTree

CouponRate
Settle

Maturity

Period

Basis

LastCouponDate, StartDate, Face, Options)

Interest-rate tree structure created by
bdttree.

Decimal annual rate.

Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity date. A vector of serial date
numbers or date strings.

(Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 1, 2, 3,
4, 6, and 12. Default = 2.

(Optional) Day-count basis of the instrument.
A vector of integers.

® (0 = actual/actual (default)

* 1=30/360 (SIA)

® 2 = actual/360

® 3 = actual/365

* 4 =30/360 (BMA)

® 5=30/360 (ISDA)

® 6 =230/360 (European)

® 7 = actual/365 (Japanese)

6-77

bondbybdt

6-78

EndMonthRule

IssueDate

FirstCouponDate

LastCouponDate

e 8 = actual/actual ICMA)
® 9 = actual/360 (ICMA)

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
* 13 = BUS/252

(Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that
a bond’s coupon payment date is always
the same numerical day of the month. 1 =
set rule on (default), meaning that a bond’s
coupon payment date is always the last
actual day of the month.

(Optional) Date when a bond was issued.

(Optional) Date when a bond makes its first
coupon payment. When FirstCouponDate
and LastCouponDate are both specified,
FirstCouponDate takes precedence in
determining the coupon payment structure.

(Optional) Last coupon date of a bond prior
to the maturity date. In the absence of

a specified FirstCouponDate, a specified
LastCouponDate determines the coupon
structure of the bond. The coupon structure
of a bond is truncated at the LastCouponDate
regardless of where it falls and is followed
only by the bond’s maturity cash flow date.

bondbybdt

Description

Examples

StartDate (Optional) Date when a bond actually starts
(the date from which a bond cash flow
is considered). To make an instrument
forward-starting, specify this date as a future
date. If you do not specify StartDate, the
effective start date is the Settle date.

Face (Optional) Face value. Default = 100.

Options (Optional) Derivatives pricing options
structure created with derivset.

The Settle date for every bond is set to the ValuationDate of the BDT
tree. The bond argument Settle is ignored.

[Price, PriceTree] = bondbybdt(BDTTree, CouponRate,
Settle,Maturity, Period, Basis, EndMonthRule,
IssueDate,FirstCouponDate, LastCouponDate, StartDate, Face,
Options) computes the price of a bond from a BDT interest-rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected
prices at time O.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation
times for each node. Within PriceTree

® PriceTree.PTree contains the clean prices.

e PriceTree.AITree contains the accrued interest.

® PriceTree.tObs contains the observation times.

Price a 10% bond using a BDT interest-rate tree.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the
time and interest-rate information needed to price the bond.

load deriv.mat;

6-79

bondbybdt

Set the required values. Other arguments will use defaults.

CouponRate = 0.10;

Settle = '01-Jan-2000"';
Maturity = '01-Jan-2003';
Period = 1;

Use bondbybdt to compute the price of the bond.

Price = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period)

Price

95.5030

See Also bdttree, bdtprice, instbond

6-80

bondbybk

Purpose

Syntax

Arguments

Price bond from Black-Karasinski interest-rate tree

[Price, PriceTree]

bondbybk (BKTree, CouponRate,

Settle, Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face, Options)

BKTree

CouponRate
Settle

Maturity

Period

Basis

Forward rate tree structure created by
bktree.

Decimal annual rate.

Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity date. A vector of serial date numbers
or date strings.

(Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 1, 2, 3,
4, 6, and 12. Default = 2.

(Optional) Day-count basis of the instrument.
A vector of integers.

¢ (0 = actual/actual (default)

e 1=230/360 (SIA)

® 2 = actual/360

® 3 = actual/365

e 4 =30/360 (BMA)

e 5=230/360 (ISDA)

® 6 =30/360 (European)

e 7 = actual/365 (Japanese)

6-81

bondbybk

6-82

EndMonthRule

IssueDate

FirstCouponDate

LastCouponDate

e 8 = actual/actual ICMA)
® 9 =actual/360 (ICMA)

¢ 10 = actual/365 ICMA)

e 11 =30/360E (ICMA)

e 12 = actual/actual (ISDA)
e 13 = BUS/252

(Optional) End-of-month rule. A vector.

This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 =ignore rule, meaning that

a bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day
of the month.

(Optional) Date when a bond was issued.

(Optional) Date when a bond makes its first
coupon payment. When FirstCouponDate
and LastCouponDate are both specified,
FirstCouponDate takes precedence in
determining the coupon payment structure.

(Optional) Last coupon date of a bond
before the maturity date. In the absence

of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon
structure of the bond. The coupon structure
of a bond is truncated at the LastCouponDate
regardless of where it falls and is followed
only by the bond’s maturity cash flow date.

bondbybk

Description

Examples

StartDate (Optional) Date when a bond actually starts
(the date from which a bond cash flow
is considered). To make an instrument
forward-starting, specify this date as a future
date. If you do not specify StartDate, the
effective start date is the Settle date.

Face (Optional) Face value. Default = 100.

Options (Optional) Derivatives pricing options
structure created with derivset.

The Settle date for every bond is set to the ValuationDate of the BK
tree. The bond argument Settle is ignored.

[Price, PriceTree] = bondbybk(BKTree, CouponRate,

Settle, Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face, Options)
computes the price of a bond from a Black-Karasinski interest-rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected
prices at time O.

PriceTree is a structure of trees containing vectors of instrument
prices and accrued interest, and a vector of observation times for each
node. Within PriceTree

® PriceTree.PTree contains the clean prices.

e PriceTree.AITree contains the accrued interest.

® PriceTree.tObs contains the observation times.

Price a 4% bond using a Black-Karasinski interest-rate tree.

Load the file deriv.mat, which provides BKTree. The BKTree structure
contains the time and interest-rate information needed to price the
bond.

6-83

bondbybk

load deriv.mat;

Set the required values. Other arguments will use defaults.

CouponRate = 0.04;
Settle = '01-Jdan-2004';
Maturity = '31-Dec-2008"';
Use bondbybk to compute the price of the bond.

Price = bondbybk(BKTree, CouponRate, Settle, Maturity)

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =

98.0300

See Also bkprice, bktree, hwprice, hwtree, instbond

6-84

bondbyhjm
|

Purpose Price bond from HJM interest-rate tree

Syntax [Price, PriceTree] = bondbyhjm(HJMTree, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face, Options)

Arguments
HJMTree Forward rate tree structure created by
hjmtree.
CouponRate Decimal annual rate.
Settle Settlement date. A vector of serial date

numbers or date strings. Settle must be
earlier than Maturity.

Maturity Maturity date. A vector of serial date
numbers or date strings.

Period (Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 1, 2, 3,
4, 6, and 12. Default = 2.

Basis (Optional) Day-count basis of the instrument.
A vector of integers.
® 0 = actual/actual (default)
e 1=230/360 (SIA)
® 2 = actual/360
® 3 = actual/365
* 4 =30/360 (BMA)
e 5=230/360 (ISDA)
e 6 =30/360 (European)
e 7 = actual/365 (Japanese)

6-85

bondbyhjm

6-86

EndMonthRule

IssueDate

FirstCouponDate

LastCouponDate

e 8 = actual/actual ICMA)
® 9 =actual/360 ICMA)

¢ 10 = actual/365 ICMA)

e 11 =30/360E (ICMA)

® 12 = actual/actual (ISDA)
e 13 = BUS/252

(Optional) End-of-month rule. A vector.

This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day
of the month.

(Optional) Date when a bond was issued.

(Optional) Date when a bond makes its first
coupon payment. When FirstCouponDate
and LastCouponDate are both specified,
FirstCouponDate takes precedence in
determining the coupon payment structure.

(Optional) Last coupon date of a bond
before the maturity date. In the absence

of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon
structure of the bond. The coupon structure
of a bond is truncated at the LastCouponDate
regardless of where it falls and is followed
only by the bond’s maturity cash flow date.

bondbyhjm

Description

Examples

StartDate (Optional) Date when a bond actually starts
(the date from which a bond cash flow
1s considered). To make an instrument
forward-starting, specify this date as a future
date. If you do not specify StartDate, the
effective start date is the Settle date.

Face (Optional) Face value. Default = 100.

Options (Optional) Derivatives pricing options
structure created with derivset.

The Settle date for every bond is set to the ValuationDate of the HIM
tree. The bond argument Settle is ignored.

[Price, PriceTree] = bondbyhjm(HJMTree, CouponRate,
Settle,Maturity, Period, Basis, EndMonthRule,
IssueDate,FirstCouponDate, LastCouponDate, StartDate, Face,
Options) computes the price of a bond from an HJM forward-rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected
prices at time O.

PriceTree is a structure of trees containing vectors of instrument
prices and accrued interest, and a vector of observation times for each
node. Within PriceTree

® PriceTree.PBush contains the clean prices.

e PriceTree.AIBush contains the accrued interest.

® PriceTree.tObs contains the observation times.

Price a 4% bond using an HJM forward-rate tree.

Load the file deriv.mat, which provides HIMTree. The HUMTree
structure contains the time and forward-rate information needed to
price the bond.

6-87

bondbyhjm

load deriv.mat;

Set the required values. Other arguments will use defaults.
CouponRate = 0.04;
Settle = '01-Jan-2000"';
Maturity = '01-Jdan-2004"';
Use bondbyhjm to compute the price of the bond.
Price = bondbyhjm(HJMTree, CouponRate, Settle, Maturity)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Price =

97.5280

See Also hjmtree, hjmprice, instbond

6-88

bondbyhw

Purpose

Syntax

Arguments

Price bond from Hull-White interest-rate tree

[Price, PriceTree]

bondbyhw(HWTree, CouponRate,

Settle, Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face, Options)

HWTree

CouponRate
Settle

Maturity

Period

Basis

Forward-rate tree structure created by
hwtree.

Decimal annual rate.

Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity date. A vector of serial date
numbers or date strings.

(Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 1, 2, 3,
4, 6, and 12. Default = 2.

(Optional) Day-count basis of the instrument.
A vector of integers.

0 = actual/actual (default)
1 =30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

7 = actual/365 (Japanese)

6-89

bondbyhw

6-90

EndMonthRule

IssueDate

FirstCouponDate

LastCouponDate

e 8 = actual/actual ICMA)
® 9 = actual/360 (ICMA)

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
* 13 = BUS/252

(Optional) End-of-month rule. A vector.
This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that
a bond’s coupon payment date is always
the same numerical day of the month. 1 =
set rule on (default), meaning that a bond’s
coupon payment date is always the last
actual day of the month.

(Optional) Date when a bond was issued.

(Optional) Date when a bond makes its first
coupon payment. When FirstCouponDate
and LastCouponDate are both specified,
FirstCouponDate takes precedence in
determining the coupon payment structure.

(Optional) Last coupon date of a bond
before the maturity date. In the absence

of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon
structure of the bond. The coupon structure
of a bond is truncated at the LastCouponDate
regardless of where it falls and is followed
only by the bond’s maturity cash flow date.

bondbyhw

Description

Examples

StartDate (Optional) Date when a bond actually starts
(the date from which a bond cash flow
is considered). To make an instrument
forward-starting, specify this date as a future
date. If you do not specify StartDate, the
effective start date is the Settle date.

Face (Optional) Face value. Default = 100.

Options (Optional) Derivatives pricing options
structure created with derivset.

The Settle date for every bond is set to the ValuationDate of the HW
tree. The bond argument Settle is ignored.

[Price, PriceTree] = bondbyhw(HWTree, CouponRate,

Settle, Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face, Options)
computes the price of a bond from a Hull-White interest-rate tree.

Price is a number of instruments (NINST)-by-1 matrix of expected
prices at time O.

PriceTree is a structure of trees containing vectors of instrument
prices and accrued interest, and a vector of observation times for each
node. Within PriceTree

® PriceTree.PTree contains the clean prices.

e PriceTree.AITree contains the accrued interest.

® PriceTree.tObs contains the observation times.

Price a 4% bond using a Hull-White interest-rate tree.

Load the file deriv.mat, which provides HWTree. The HWTree structure
contains the time and interest-rate information needed to price the
bond.

6-91

bondbyhw

load deriv.mat;

Set the required values. Other arguments will use defaults.
CouponRate = 0.04;
Settle = '01-Jdan-2004';
Maturity = '31-Dec-2008';
Use bondbyhw to compute the price of the bond.
Price = bondbyhw(HWTree, CouponRate, Settle, Maturity)
Warning: Not all cash flows are aligned with the tree. Result will
be approximated.
Price =

98.0483

See Also bkprice, bktree, hwprice, hwtree, instbond

6-92

bondbyzero

Purpose

Syntax

Arguments

Price bond from set of zero curves

Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face)

RateSpec

CouponRate
Settle

Maturity

Period

Basis

Structure containing the properties of an
interest-rate structure. See intenvset for
information on creating RateSpec.

Decimal annual rate.

Settlement date. A vector of serial date
numbers or date strings. Settle must be
earlier than Maturity.

Maturity date. A vector of serial date
numbers or date strings.

(Optional) Coupons per year of the bond. A
vector of integers. Allowed values are 1, 2, 3,
4, 6, and 12. Default = 2.

(Optional) Day-count basis of the instrument.
A vector of integers.

e (0 = actual/actual (default)

e 1=230/360 (SIA)

® 2 = actual/360

® 3 = actual/365

e 4 =30/360 (BMA)

e 5=30/360 (ISDA)

* 6 =30/360 (European)

e 7 = actual/365 (Japanese)

6-93

bondbyzero

6-94

EndMonthRule

IssueDate

FirstCouponDate

LastCouponDate

e 8 = actual/actual ICMA)
® 9 =actual/360 ICMA)

¢ 10 = actual/365 ICMA)

e 11 =30/360E (ICMA)

® 12 = actual/actual (ISDA)
e 13 = BUS/252

(Optional) End-of-month rule. A vector.

This rule applies only when Maturity is an
end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a
bond’s coupon payment date is always the
same numerical day of the month. 1 = set rule
on (default), meaning that a bond’s coupon
payment date is always the last actual day
of the month.

(Optional) Date when a bond was issued.

(Optional) Date when a bond makes its first
coupon payment. When FirstCouponDate
and LastCouponDate are both specified,
FirstCouponDate takes precedence in
determining the coupon payment structure.

(Optional) Last coupon date of a bond
before the maturity date. In the absence

of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon
structure of the bond. The coupon structure
of a bond is truncated at the LastCouponDate
regardless of where it falls and is followed
only by the bond’s maturity cash flow date.

bondbyzero

Description

Examples

StartDate (Optional) Date when a bond actually starts
(the date from which a bond cash flow
1s considered). To make an instrument
forward-starting, specify this date as a future
date. If you do not specify StartDate, the
effective start date is the Settle date.

Face (Optional) Face value. Default = 100.

All inputs are either scalars or number of instruments (NINST)-by-1
vectors unless otherwise specified. Dates can be serial date numbers or
date strings. Optional arguments can be passed as empty matrix [].

Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity,
Period, Basis, EndMonthRule, IssueDate, FirstCouponDate,
LastCouponDate, StartDate, Face) returns a NINST-by-NUMCURVES
matrix of clean bond prices. Each column arises from one of the zero
curves.

Price a 4% bond using a set of zero curves.

Load the file deriv.mat, which provides ZeroRateSpec, the
interest-rate term structure needed to price the bond.

load deriv.mat;

Set the required values. Other arguments will use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Use bondbyzero to compute the price of the bond.

Price = bondbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price

6-95

bondbyzero

97.5334

See Also cfbyzero, fixedbyzero, floatbyzero, swapbyzero

6-96

bushpath

Purpose
Syntax

Arguments

Description

Examples

Extract entries from node of bushy tree

Values = bushpath(Tree, BranchList)

Tree Bushy tree.

BranchList Number of paths (NUMPATHS) by path length
(PATHLENGTH) matrix containing the sequence of
branchings.

Values = bushpath(Tree, BranchList) extracts entries of a node
of a bushy tree. The node path is described by the sequence of
branchings taken, starting at the root. The top branch is number 1, the
second-to-top is 2, and so on. Set the branch sequence to zero to obtain
the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing
the retrieved entries of a bushy tree.

Create an HJM tree by loading the example file.
load deriv.mat;
Then

FwdRates = bushpath(HJMTree.FwdTree, [1 2 1])

returns the rates at the tree nodes located by taking the up branch,
then the down branch, and finally the up branch again.

FwdRates =
1.0356

1.0364
1.0526

6-97

bushpath

6-98

1.0463

You can visualize this with the treeviewer function.

treeviewer (HJMTree)

ol
File Edit Yiew Insert Tools Window Help
r Tree Visualization
; ; ; ; Selection Wisualization
% Path " Table
" MNode and Children ' Diagram
" Plat
1.04 1.05
1.05
1.04
0 1 2 3
Cloze
See Also bushshape, mkbush

bushshape

Purpose

Syntax

Arguments

Description

Examples

Retrieve shape of bushy tree

[NumLevels, NumChild, NumPos, NumStates,
Trim] = bushshape(Tree)

Tree Bushy tree.

[NumLevels, NumChild, NumPos, NumStates, Trim] =
bushshape (Tree) returns information on a bushy tree’s shape.

NumLevels is the number of time levels of the tree.

NumChild is a 1-by-number of levels (NUMLEVELS) vector with the
number of branches (children) of the nodes in each level.

NumPos is a 1-by-NUMLEVELS vector containing the length of the state
vectors in each level.

NumStates is a 1-by-NUMLEVELS vector containing the number of state
vectors in each level.

Trimis 1 if NumPos decreases by 1 when moving from one time level to
the next. Otherwise, it is 0.

Create an HJM tree by loading the example file.
load deriv.mat;

With treeviewer you can see the general shape of the HIM
interest-rate tree.

6-99

bushshape

PR =i
File Edit Yiew Insert Tools Window Help
r Tree Visualization

Selection Wisualization

% Path " Table

" MNode and Children ' Diagram

" Plat
0 1 2 3
Help Cloze

With this tree

[NumLevels, NumChild, NumPos, NumStates, Trim] =...

bushshape (HUMTree.FwdTree)

returns

NumLevels
4

NumChild
2 2 2 0

NumPos
4 3 2 1

NumStates =
1 2 4 8

6-100

bushshape
|

Trim =

You can recreate this tree using the mkbush function.

Tree = mkbush(NumLevels, NumChild (1), NumPos(1), Trim);
Tree = mkbush(NumLevels, NumChild, NumPos);
See Also bushpath, mkbush

6-101

capbybdt

Purpose Price cap instrument from BDT interest-rate tree
Syntax [Price, PriceTree] = capbybdt(BDTTree, Strike, Settle,
Maturity, Reset, Basis, Principal, Options)
Arguments
BDTTree Interest-rate tree structure created by bdttree.
Strike Number of instruments (NINST)-by-1 vector of rates

at which the cap is exercised.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the cap.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the cap.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.
® (0 = actual/actual (default)
1 = 30/360 (SIA)
2 = actual/360
3 = actual/365
4 = 30/360 (BMA)
5 = 30/360 (ISDA)
6 = 30/360 (European)
7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

6-102

capbybdt

Description

Examples

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
e 13 = BUS/252

Principal (Optional) The notional principal amount. Default
=100.
Options (Optional) Derivatives pricing options structure

created with derivset.

[Price, PriceTree] = capbybdt(BDTTree, Strike, Settle,
Maturity, Reset, Basis, Principal, Options) computes the price
of a cap instrument from a BDT interest-rate tree.

Price is the expected price of the cap at time 0.

PriceTree is the tree structure with values of the cap at each node.
The Settle date for every cap is set to the ValuationDate of the BDT
tree. The cap argument Settle is ignored.

Example 1. Price a 3% cap instrument using a BDT interest-rate tree.

Load the file deriv.mat, which provides BDTTree. The BDTTree
structure contains the time and interest-rate information needed to
price the cap instrument.

load deriv.mat;
Set the required values. Other arguments will use defaults.

Strike = 0.083;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use capbybdt to compute the price of the cap instrument.

6-103

capbybdt

Price = capbybdt(BDTTree, Strike, Settle, Maturity)
Price =
28.5191

Example 2. This example shows the pricing of a 10% cap instrument
using a newly created BDT tree.

First set the required arguments for the three needed specifications.

Compounding = 1;

ValuationDate = '01-01-2000"';

StartDate = ValuationDate;

EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];

Rates = [.1; .11; .12; .125; .13];

Volatility = [.2; .19; .18; .17; .16];

Next create the specifications.

RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...

'StartDates', StartDate,...

'EndDates', EndDates,...

'Rates', Rates);

BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

Now create the BDT tree from the specifications.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Set the cap arguments. Remaining arguments will use defaults.
CapStrike = 0.10;

Settlement = ValuationDate;
Maturity = '01-01-2002"';

6-104

capbybdt

CapReset = 1;
Use capbybdt to find the price of the cap instrument.

Price= capbybdt(BDTTree, CapStrike, Settlement, Maturity,...
CapReset)

Price =

1.6923

See Also bdttree, cfbybdt, floorbybdt, swapbybdt

6-105

capbybk

Purpose Price cap instrument from Black-Karasinski interest-rate tree
Syntax [Price, PriceTree] = capbybk(BKTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)
Arguments
BKTree Interest-rate tree structure created by bktree.
Strike Number of instruments (NINST)-by-1 vector of rates
at which the cap is exercised.
Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the cap.
Maturity NINST-by-1 vector of dates representing the maturity
dates of the cap.
Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.
Basis (Optional) Day-count basis of the instrument. A

6-106

vector of integers.

® (0 = actual/actual (default)
1 = 30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

capbybk

Description

Examples

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
e 13 = BUS/252

Principal (Optional) The notional principal amount. Default
=100.
Options (Optional) Derivatives pricing options structure

created with derivset.

[Price, PriceTree] = capbybk(BKTree, Strike, Settle,
Maturity,Reset, Basis, Principal, Options) computes the price
of a cap instrument from a Black-Karasinski interest-rate tree.

Price is the expected price of the cap at time 0.
PriceTree is the tree structure with values of the cap at each node.

The Settle date for every cap is set to the ValuationDate of the BK
tree. The cap argument Settle is ignored.

Price a 3% cap instrument using a Black-Karasinski interest-rate tree.

Load the file deriv.mat, which provides BKTree. The BKTree structure
contains the time and interest-rate information needed to price the
cap instrument.

load deriv.mat;
Set the required values. Other arguments will use defaults.

Strike = 0.083;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';

Use capbybk to compute the price of the cap instrument.

6-107

capbybk

Price = capbybk(BKTree, Strike, Settle, Maturity)
Price =
6.8337
See Also cfbybk, floorbybk, bktree, swapbybk

6-108

capbyblk

Purpose

Syntax

Arguments

Price caps using Black option pricing model

[CapPrice, Caplets] =
Maturity, Volatility)
[CapPrice, Caplets] =

capbyblk (RateSpec, Strike, Settle,

capbyblk (RateSpec, Strike, Settle,

Maturity, Volatility, 'Namei', Valuel...)

RateSpec

Strike

Settle
Maturity
Volatility

Reset

Principal

Basis

The annualized, continuously compounded rate term
structure. For more information, see intenvset.

NINST-by-1 vector of rates at which the cap is
exercised, as a decimal number.
Scalar representing the settle date of the cap.

Scalar representing the maturity date of the cap.
NINST-by-1 vector of volatilities.

(Optional) NINST-by-1 vector representing the
frequency of payments per year. Default is 1.

(Optional) NINST-by-1 vector representing the
notional principal amount. Default is 100.

NINST-by-1 vector representing the basis used when
annualizing the input forward rate.

® (0 = actual/actual (default)

1 =30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

6-109

capbyblk

Description

6-110

7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

® 10 = actual/365 (ICMA)
11 = 30/360E (ICMA)

e 12 = actual/actual (ISDA)
* 13 =BUS/252

ValuationDate (Optional) Scalar representing the observation date
of the investment horizons. The default is the Settle
date.

Note All optional inputs are specified as matching parameter
name/value pairs. The parameter name is specified as a character
string, followed by the corresponding parameter value. You can specify
parameter name/value pairs in any order. Names are case-insensitive
and partial string matches are allowed provided no ambiguities exist.

[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle,
Maturity, Volatility)

[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle,
Maturity, Volatility, 'Nameil', Valueil...)

Use capbyblk to price caps using the Black option pricing model.

The outputs are:

® CapPrice — NINST-by-1 expected prices of the cap.
® Caplets — NINST-by-NCF array of caplets, padded with NaNs.

capbyblk
|

Examples Consider an investor who gets into a contract that caps the interest rate
on a $100,000 loan at 8% quarterly compounded for 3 months, starting
on January 1, 2009. Assuming that on January 1, 2008 the zero rate
1s 6.9394% continuously compounded and the volatility is 20%, use
this data to compute the cap price.

Calculate the RateSpec:

ValuationDate = 'Jan-01-2008"';
EndDates ='April-01-2010"';
Rates = 0.069394;

Compounding = -1;

Basis = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,
‘StartDates', ValuationDate, 'EndDates', EndDates,
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Compute the price of the cap:

Settle = 'Jan-01-2009'; % cap starts in a year
Maturity = 'April-01-2009';

Volatility = 0.20;

CapRate = 0.08;

CapReset = 4;

Principal=100000;

CapPrice = capbyblk(RateSpec, CapRate, Settle, Maturity, Volatility,...
'Reset',CapReset, 'ValuationDate',ValuationDate, 'Principal', Principal,...
'Basis', Basis)

CapPrice =

51.6125

See Also floorbyblk

6-111

capbyhjm

Purpose Price cap instrument from HJM interest-rate tree
Syntax [Price, PriceTree] = capbyhjm(HJMTree, Strike,
Settle, Maturity, Reset, Basis, Principal, Options)
Arguments
HJMTree Forward-rate tree structure created by hjmtree.
Strike Number of instruments (NINST)-by-1 vector of rates at
which the cap is exercised.
Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the cap.
Maturity NINST-by-1 vector of dates representing the maturity
dates of the cap.
Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.
Basis (Optional) Day-count basis of the instrument. A

6-112

vector of integers.

® (0 = actual/actual (default)
1 = 30/360 (SIA)

® 2 = actual/360

® 3 = actual/365

* 4 =230/360 (BMA)

* 5=230/360 (ISDA)

® 6 = 30/360 (European)

® 7 = actual/365 (Japanese)
e 8 = actual/actual (ICMA)
® 9 = actual/360 (ICMA)

capbyhjm

Description

Examples

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
* 13 = BUS/252

Principal (Optional) The notional principal amount. Default
= 100.
Options (Optional) Derivatives pricing options structure

created with derivset.

[Price, PriceTree] = capbyhjm(HJMTree, Strike, Settle,
Maturity, Reset, Basis, Principal, Options) computes the price
of a cap instrument from an HJM tree.

Price is the expected price of the cap at time 0.
PriceTree is the tree structure with values of the cap at each node.

The Settle date for every cap is set to the ValuationDate of the HIM
tree. The cap argument Settle is ignored.

Price a 3% cap instrument using an HJM forward-rate tree.

Load the file deriv.mat, which provides HUMTree. The HUMTree
structure contains the time and forward-rate information needed to
price the cap instrument.

load deriv.mat;
Set the required values. Other arguments will use defaults.

Strike = 0.083;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use capbyhjm to compute the price of the cap instrument.

6-113

capbyhjm

Price = capbyhjm(HJMTree, Strike, Settle, Maturity)
Price =
6.2831
See Also cfbyhjm, floorbyhjm, hjmtree, swapbyhjm

6-114

capbyhw

Purpose

Syntax

Arguments

Price cap instrument from Hull-White interest-rate tree

[Price, PriceTree] = capbyhw(HWTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

HWTree
Strike

Settle

Maturity

Reset

Basis

Interest-rate tree structure created by hwtree.

Number of instruments (NINST)-by-1 vector of rates
at which the cap is exercised.

Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the cap.

NINST-by-1 vector of dates representing the maturity
dates of the cap.

(Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

(Optional) Day-count basis of the instrument. A
vector of integers.

® (0 = actual/actual (default)
1 = 30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

6-115

capbyhw

Description

Examples

6-116

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
* 13 = BUS/252

Principal (Optional) The notional principal amount. Default
=100.
Options (Optional) Derivatives pricing options structure

created with derivset.

[Price, PriceTree] = capbyhw(HWTree, Strike, Settle,
Maturity,Reset, Basis, Principal, Options) computes the price
of a cap instrument from a Hull-White interest-rate tree.

Price is the expected price of the cap at time 0.

PriceTree is the tree structure with values of the cap at each node.
The Settle date for every cap is set to the ValuationDate of the HW
tree. The cap argument Settle is ignored.

Price a 3% cap instrument using a Hull-White interest-rate tree.

Load the file deriv.mat, which provides HWNTree. The HWTree structure
contains the time and interest-rate information needed to price the
cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.083;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2009';

Use capbyhw to compute the price of the cap instrument.

capbyhw
|

Price = capbyhw(HWTree, Strike, Settle, Maturity)
Price =
7.0707
See Also cfbyhw, floorbyhw, hwtree, swapbyhw

6-117

cashbybls

Purpose
Syntax

Arguments

Description

Examples

6-118

Calculate price of cash-or-nothing digital options using Black-Scholes
model

Price = cashbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike, Payoff)

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.
Strike NINST-by-1 vector of strike price values.

Payoff NINST-by-1 vector of payoff values or the amount

to be paid at expiration.

Price = cashbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike, Payoff) computes cash-or-nothing option prices
using the Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.

Consider a European call and put cash-or-nothing options on a futures
contract with and exercise strike price of $90, a fixed payoff of $10
that expires on October 1, 2008. Assume that on January 1, 2008, the
contract trades at $110, and has a volatility of 25% per annum and the
risk-free rate is 4.56% per annum. Using this data, calculate the price of
the call and put cash-or-nothing options on the futures contract.

Create the RateSpec:

cashbybls

Settle = 'Jan-1-2008';

Maturity = 'Oct-1-2008"';

Rates = 0.045;

Compounding = -1;

Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Define the StockSpec:

AssetPrice = 110;

Sigma = .25;

DivType = 'Continuous';

DivAmount = Rates;

StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmount);

Define the call and put options:

OptSpec = {'call'; 'put'};
Strike = 90;
Payoff = 10;

Calculate the price:

See Also

Pcon = cashbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, Payoff)

Pcon =

7.6716
1.9965

assetbybls, cashsensbybls, gapbybls, supersharebybls

6-119

cashsensbybls

Purpose Calculate price and sensitivities of cash-or-nothing digital options using
Black-Scholes model

Syntax PriceSens = cashsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, Payoff)
PriceSens = cashsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, Payoff, OutSpec)

Arguments
RateSpec The annualized, continuously compounded rate

term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.
Strike NINST-by-1 vector of strike price values.

Payoff NINST-by-1 vector of payoff values or the amount

to be paid at expiration.

OutSpec (Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
You can specify parameter name/value pairs
in any order. Names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

® NOUT-by-1 or 1-by-NOUT cell array of strings

indicating the nature and order of the outputs
for the function. Possible values are 'Price’,

6-120

cashsensbybls

Description

Examples

'Delta’, 'Gamma', 'Vega', 'Lambda’, 'Rho’,
'Theta', or 'All’.

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

To invoke from a function: [Price, Lambda,
Rho] = cashsensbybls(..., 'OutSpec',
{'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

® Default is OutSpec = {'Price'}.

PriceSens = cashsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, Payoff) computes cash-or-nothing
option prices using the Black-Scholes option pricing model.

PriceSens = cashsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, Payoff, OutSpec) includes an
OutSpec argument defined as parameter/value pairs, and computes
cash-or-nothing option prices and sensitivities using the Black-Scholes
option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices and
sensitivities.

Consider a European call and put cash-or-nothing options on a futures
contract with an exercise price of $90, and a fixed payoff of $10 that
expires on January 1, 2009. Assume that on October 1, 2008 the
contract trades at $110, and has a volatility of 25% per annum and
the risk-free rate is 4.5% per annum. Using this data, calculate the

6-121

cashsensbybls
|

price and sensitivity of the call and put cash-or-nothing options on the
futures contract

Create the RateSpec:

Settle = 'Jan-1-2008';

Maturity = 'Oct-1-2008"';

Rates = 0.045;

Compounding = -1;

Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...

'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Define the StockSpec:

AssetPrice = 110;

Sigma = .25;
DivType = 'Continuous'’;
DivAmount = Rates;

StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmount);

Define the call and put options:

OptSpec = {'call'; 'put'};
Strike 90;
Payoff 10;

Compute the gamma, theta, and price:

OutSpec = { 'gamma';'theta';'price'};
[Gamma, Theta, Price] = cashsensbybls(RateSpec, StockSpec,...
Settle, Maturity, OptSpec, Strike, Payoff, 'OutSpec', OutSpec)

Gamma

-0.0050
0.0050

6-122

cashsensbybls

Theta =
-2.2489
1.8139

Price =

7.6716
1.9965

See Also cashbybls

6-123

cfbybdt

Purpose Price cash flows from BDT interest-rate tree

Syntax [Price, PriceTree] = cfbybdt(BDTTree,
CFlowAmounts, CFlowDates, Settle, Basis, Options)

Arguments

BDTTree

CFlowAmounts

CFlowDates

Settle

Basis

6-124

Forward-rate tree structure created by bdttree.

Number of instruments (NINST) by maximum
number of cash flows (MOSTCFS) matrix of cash
flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has
fewer than MOSTCFS cash flows, the end of the row
is padded with NaNs.

NINST-by-MOSTCFS matrix of cash flow dates.
Each entry contains the serial date number of the
corresponding cash flow in CFlowAmounts.

Settlement date. A vector of serial date numbers
or date strings. The Settle date for every cash
flow is set to the ValuationDate of the BDT tree.
The cash flow argument, Settle, is ignored.

(Optional) Day-count basis of the instrument. A
vector of integers.

® (0 = actual/actual (default)

1 =30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

cfbybdt

Description

Examples

® 7 = actual/365 (Japanese)
e 8 = actual/actual ICMA)
® 9 = actual/360 (ICMA)

e 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
* 13 =BUS/252

Options (Optional) Derivatives pricing options structure
created with derivset.

[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts,
CFlowDates, Settle, Basis, Options) prices cash flows from a
BDT interest-rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Price a portfolio containing two cash flow instruments paying interest
annually over the four-year period from January 1, 2000 to January
1, 2004.

Load the file deriv.mat, which provides BDTTree. The BDTTree
structure contains the time and interest-rate information needed to
price the instruments.

load deriv.mat;

The valuation date (settle date) specified in BDTTree is January 1, 2000
(date number 730486).

BDTTree.RateSpec.ValuationDate

6-125

cfbybdt

ans =
730486

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [730852, NaN, 731582, 731947,
730852, 731217, 731582, 731947];

Use this information to compute the prices of the two cash flow
Instruments.

[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts,
CFlowDates, BDTTree.RateSpec.ValuationDate)

Price =

74.0112
74.3671

PriceTree =
FinObj: 'BDTPriceTree’
tObs: [0 1.00 2.00 3.00 4.00]
PTree: {1x5 cell}

You can visualize the prices of the two cash flow instruments with the
treeviewer function.

treeviewer (PriceTree)

6-126

cfbybdt

See Also

=l0lx]
He Edt Yew lnsert Toos Window el
Seleusn. Vinmzotion
= pam = Table
1 Node and Chicren & Disgram
Pt
Iratument Il i
* Hn
o 1 2z 3 4
—hw | ome |

=101 x]
Be Dt Yew Jost Joos Windew Heb
Sedten Veissohe ol
& P = Table
" Hode and Chiden = Disgram
Pt
Inshument [-
* 3
o 1 2 3 4
s |__oom |

bdttree, bdtprice, cfamounts, instcf

6-127

cfbybk

Purpose Price cash flows from Black-Karasinski interest-rate tree
Syntax [Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates,
Settle, Basis, Options)
Arguments
BKTree Forward-rate tree structure created by bktree.
CFlowAmounts Number of instruments (NINST) by maximum

number of cash flows (MOSTCFS) matrix of cash
flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has
fewer than MOSTCFS cash flows, the end of the row
is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates.
Each entry contains the serial date number of the
corresponding cash flow in CFlowAmounts.

Settle Settlement date. A vector of serial date numbers
or date strings. The Settle date for every cash
flow is set to the ValuationDate of the BK tree.
The cash flow argument, Settle, is ignored.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.
® (0 = actual/actual (default)

1 =30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

6-128

cfbybk

Description

Examples

® 7 = actual/365 (Japanese)
e 8 = actual/actual ICMA)
® 9 = actual/360 (ICMA)

e 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
* 13 =BUS/252

Options (Optional) Derivatives pricing options structure
created with derivset.

[Price, PriceTree] = cfbybk(BKTree, CFlowAmounts,
CFlowDates, Settle, Basis, Options) prices cash flows from a
Black-Karasinski interest-rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Price a portfolio containing two cash flow instruments paying interest
annually over the four-year period from January 1, 2005 to January
1, 2009.

Load the file deriv.mat, which provides BKTree. The BKTree structure
contains the time and interest-rate information needed to price the
instruments.

load deriv.mat;

The valuation date (settle date) specified in BKTree is January 1, 2004
(date number 731947).

BKTree.RateSpec.ValuationDate

6-129

cfbybk

ans =

731947

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];

CFlowDates =

[732678, NaN, 733408,733774;
732678, 733034, 733408, 734774];

Use this information to compute the prices of the two cash flow

instruments.

[Price, PriceTree] =

cfbybk (BKTree, CFlowAmounts, CFlowDates,...

BKTree.RateSpec.ValuationDate)

Price =

93.3600
81.6218

PriceTree =

FinObj:

tObs:
PTree:

double]

Connect:
Probs:

'BKPriceTree'

[0123 4]

{[2x1 double] [2x3 double] [2x5 double] [2x5
[2x5 double]}

{[2] [2 3 4] [2 23 4 4]}

{[3x1 double] [3x3 double] [3x5 double]}

You can visualize the prices of the two cash flow instruments with the
treeviewer function.

treeviewer (PriceTree)

6-130

cfbybk
|

=l P =loix|

Fle Cdt Yiew Insert Took Ceshiop Window Help b Fle Cdt Vew bost Took Oeskiop Window Hel
Selection izskration _ _ _ _ _ Selection isuskzaton
 Palh 1 Tabie = Paih T Table
1 Mode ord Chikren 1 Disgrem 1™ Hose and Chikdren 1 Dogram
et e

GO T " — o1 2 3 4 " —
See Also bktree, bkprice, cfamounts, instcf

6-131

cfbyhjm

Purpose Price cash flows from HJM interest-rate tree

Syntax [Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,
CFlowDates, Settle, Basis, Options)

Arguments

HJMTree

CFlowAmounts

CFlowDates

Settle

Basis

6-132

Forward-rate tree structure created by hjmtree.

Number of instruments (NINST) by maximum
number of cash flows (MOSTCFS) matrix of cash
flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has
fewer than MOSTCFS cash flows, the end of the row
is padded with NaNs.

NINST-by-MOSTCFS matrix of cash flow dates.
Each entry contains the serial date number of the
corresponding cash flow in CFlowAmounts.

Settlement date. A vector of serial date numbers
or date strings. The Settle date for every cash
flow is set to the ValuationDate of the HJM tree.
The cash flow argument, Settle, is ignored.

(Optional) Day-count basis of the instrument. A
vector of integers.

® (0 = actual/actual (default)

1 =30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

cfbyhjm

Description

Examples

® 7 = actual/365 (Japanese)
e 8 = actual/actual ICMA)
® 9 = actual/360 (ICMA)

e 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
* 13 =BUS/252

Options (Optional) Derivatives pricing options structure
created with derivset.

[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,
CFlowDates, Settle, Basis, Options) prices cash flows from an
HJM interest-rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Price a portfolio containing two cash flow instruments paying interest
annually over the four-year period from January 1, 2000 to January
1, 2004.

Load the file deriv.mat, which provides HIMTree. The HUMTree
structure contains the time and forward-rate information needed to
price the instruments.

load deriv.mat;

The valuation date (settle date) specified in HIMTree is January 1, 2000
(date number 730486).

HWTree.RateSpec.ValuationDate

6-133

cfbyhjm

ans =
730486

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [730852, NaN, 731582, 731947,
730852, 731217, 731582, 731947];

Use this information to compute the prices of the two cash flow
Instruments.

[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,...
CFlowDates, HJMTree.RateSpec.ValuationDate)

Price =

96.7805
97.2188

PriceTree =
FinObj: 'HJMPriceTree'
tObs: [0 1.00 2.00 3.00 4.00]
PBush: {1x5 cell}

You can visualize the prices of the two cash flow instruments with the
treeviewer function.

treeviewer (PriceTree)

6-134

ST 2ol iz
et ew Jret Jods Window el e G0 Yew jest Tock Window bl
Selection Winaskyation - - - — - .w Vrissoheahon
= P Tabie & P = Table
1 Nodds and Chikhon = [Diagpand Node and Chiden & Diagram
C Pt ~ P
bt 1 | e [T]
of./
\\
! - %78 - T
o 1 2z 3 4 o1 2 3§ ¢
Helgy | e | Help | Cloge.
See Also cfamounts, hjmprice, hjmtree, instcf

6-135

cfbyhw

Purpose Price cash flows from Hull-White interest-rate tree
Syntax [Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates,
Settle, Basis, Options)
Arguments
HWTree Forward-rate tree structure created by hwtree.
CFlowAmounts Number of instruments (NINST) by maximum

number of cash flows (MOSTCFS) matrix of cash
flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has
fewer than MOSTCFS cash flows, the end of the row
is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates.
Each entry contains the serial date number of the
corresponding cash flow in CFlowAmounts.

Settle Settlement date. A vector of serial date numbers
or date strings. The Settle date for every cash
flow is set to the ValuationDate of the HW tree.
The cash flow argument, Settle, is ignored.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.
® (0 = actual/actual (default)

1 =30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

6-136

cfbyhw

Description

Examples

® 7 = actual/365 (Japanese)
e 8 = actual/actual ICMA)
® 9 = actual/360 (ICMA)

e 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
* 13 =BUS/252

Options (Optional) Derivatives pricing options structure
created with derivset.

[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts,
CFlowDates, Settle, Basis, Options) prices cash flows from a
Hull-White interest-rate tree.

Price is an NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Price a portfolio containing two cash flow instruments paying interest
annually over the four-year period from January 1, 2005 to January
1, 2009.

Load the file deriv.mat, which provides HNTree. The HWTree structure
contains the time and interest-rate information needed to price the
instruments.

load deriv.mat;

The valuation date (settle date) specified in HWTree is January 1, 2004
(date number 731947).

HWTree.RateSpec.ValuationDate

6-137

cfbyhw

ans =

731947

Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];

CFlowDates =

[732678, NaN, 733408, 733774;
732678, 733034, 733408, 734774];

Use this information to compute the prices of the two cash flow

instruments.

[Price, PriceTree] =

cfbyhw(HWTree, CFlowAmounts, CFlowDates,...

HWTree.RateSpec.ValuationDate)

Price =

93.3789
81.7651

PriceTree =

FinObj:

tObs:
PTree:

double]

Connect:
Probs:

'HWPriceTree'

[0123 4]

{[2x1 double] [2x3 double] [2x5 double] [2x5
[2x5 double]}

{[2] [2 3 4] [2 23 4 4]}

{[3x1 double] [3x3 double] [3x5 double]}

You can visualize the prices of the two cash flow instruments with the
treeviewer function.

treeviewer (PriceTree)

6-138

cfbyhw

See Also

=10l x| =10l
Fle Cdk Vew Insert Took Ceshiop ‘Window Help > Fle Cdk Vew Foet Tooks Oeskiop Window Help L
';-m Wimuskration ?m Wisusization
& Path ™ Tabio = Path 1™ Toble
™ Mode and Chigren 1+ Diagrem ™ Hose and Chidren ¥ Duagram
et e
roitrumend. L Insnamerd. E 2
* 9338 LR N/
o 1 2 3 4 0 1 2 3 4
L e | oo | L | om |

cfamounts, hwtree, hwprice, instcf

6-139

cfbyzero

Purpose Price cash flows from set of zero curves
Syntax Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates, Settle,
Basis)
Arguments
RateSpec Structure containing the properties of an

interest-rate structure. See intenvset for
information on creating RateSpec.

CFlowAmounts Number of instruments (NINST) by maximum
number of cash flows (MOSTCFS) matrix with
entries listing cash flow amounts corresponding
to each date in CFlowDates. Each row is a list
of cash flow values for one instrument. If an
instrument has fewer than MOSTCFS cash flows,
the end of the row is padded with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates. Each
entry contains the serial date of the corresponding
cash flow in CFlowAmounts.

Settle Settlement date on which the cash flows are
priced.
Basis (Optional) Day-count basis of the instrument. A

vector of integers.

e (0 = actual/actual (default)
1 =30/360 (SIA)

2 = actual/360

3 = actual/365

4 =30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

6-140

cfbyzero

Description

Examples

e 7 = actual/365 (Japanese)
e 8 = actual/actual ICMA)
® 9 = actual/360 (ICMA)

¢ 10 = actual/365 ICMA)

e 11 = 30/360E (ICMA)

e 12 = actual/actual (ISDA)
e 13 =BUS/252

Price = cfbyzero(RateSpec, CFlowAmounts, CFlowDates,
Settle, Basis) computes Price, an NINST-by-NUMCURVES matrix of
cash flows prices. Each column arises from one of the zero curves.

Price a portfolio containing two cash flow instruments paying interest
annually over the four-year period from January 1, 2000 to January
1, 2004.

Load the file deriv.mat, which provides ZeroRateSpec. The
ZeroRateSpec structure contains the interest-rate information needed
to price the instruments.

load deriv.mat
CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];
CFlowDates = [730852, NaN, 731582,731947;
730852, 731217, 731582, 731947];
Settle = 730486;
Price = cfbyzero(ZeroRateSpec, CFlowAmounts, CFlowDates, Settle)

Price =

96.7804
97.2187

6-141

cfbyzero

See Also bondbyzero, fixedbyzero, floatbyzero, swapbyzero

6-142

chooserbybls

Purpose

Syntax

Arguments

Description

Examples

Price European simple chooser options using Black-Scholes model

Price = chooserbybls(RateSpec, StockSpec, Settle,
Maturity, Strike)

RateSpec The annualized continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.

Strike NINST-by-1 vector of strike price values.
ChooseDate NINST-by-1 vector of chooser dates.

Price = chooserbybls(RateSpec, StockSpec, Settle, Maturity,
Strike) computes the price for European simple chooser options using
the Black-Scholes model.

Price is a NINST-by-1 vector of expected prices.

Note Only dividends of type continuous can be considered for
choosers.

Consider a European chooser option with an exercise price of $60 on
June 1, 2007. The option expires on December 2, 2007. Assume the
underlying stock provides a continuous dividend yield of 5% per annum,
1s trading at $50, and has a volatility of 20% per annum. The annualized
continuously compounded risk-free rate is 10% per annum. Assume
that the choice must be made on August 31, 2007. Using this data:

6-143

chooserbybls

AssetPrice = 50;

Strike = 60;

Settlement = 'Jun-1-2007"';
Maturity = 'Dec-2-2007';
ChooseDate = 'Aug-31-2007';
RiskFreeRate = 0.1;

Sigma 0.20;

Yield 0.05

Define the RateSpec and StockSpec:

RateSpec = intenvset('Compounding', -1, 'Rates', RiskFreeRate, 'StartDates',...

Settlement, 'EndDates', Maturity);
StockSpec = stockspec(Sigma, AssetPrice,'continuous',Yield);

Price the chooser option:

Price = chooserbybls(RateSpec, StockSpec, Settlement, Maturity,...
Strike, ChooseDate)

Price =

8.9308
References Rubinstein, Mark, “Options for the Undecided,” Risk 4, 1991.
See Also blsprice, intenvset

6-144

classfin

Purpose

Syntax

Arguments

Description

Examples

Create financial structure or return financial structure class name

Obj = classfin(ClassName)
Obj classfin(Struct, ClassName)
ClassName = classfin(0Obj)

ClassName String containing the name of a financial structure
class.

Struct MATLAB structure to be converted into a financial
structure.

0bj Name of a financial structure.

Obj = classfin(ClassName) and Obj = classfin(Struct,
ClassName) create a financial structure of class ClassName

ClassName = classfin(0bj) returns a string containing a financial
structure’s class name.

Example 1. Create an HUMTimeSpec financial structure and complete
its fields. (Typically, the function hjmtimespec is used to create
HJMTimeSpec structures).

TimeSpec = classfin('HJMTimeSpec');
TimeSpec.ValuationDate = datenum('Dec-10-1999');
TimeSpec.Maturity = datenum('Dec-10-2002");
TimeSpec.Compounding = 2;

TimeSpec.Basis = 0;

TimeSpec.EndMonthRule = 1;

TimeSpec =

FinObj: 'HJMTimeSpec'

ValuationDate: 730464
Maturity: 731560

6-145

classfin

Compounding: 2
Basis: O
EndMonthRule: 1

Example 2. Convert an existing MATLAB structure into a financial
structure.

TSpec.ValuationDate = datenum('Dec-10-1999');
TSpec.Maturity = datenum('Dec-10-2002");
TSpec.Compounding = 2;

TSpec.Basis = 0;

TSpec.EndMonthRule = 0;

TimeSpec = classfin(TSpec, 'HJMTimeSpec')

TimeSpec =

ValuationDate: 730464
Maturity: 731560
Compounding: 2
Basis: 0
EndMonthRule: O
FinObj: 'HJMTimeSpec'

Example 3. Obtain a financial structure’s class name.

load deriv.mat
ClassName = classfin(HJMTree)
ClassName =

HIMFwdTree

See Also isafin

6-146

compoundbycrr

Purpose

Syntax

Arguments

Price compound option from CRR binomial tree

[Price, PriceTree]

= compoundbycrr(CRRTree, UOptSpec, UStrike,

USettle, UExerciseDates, UAmericanOpt, COptSpec,

CStrike, CSettle,

CRRTree
UOptSpec
UStrike
USettle

UExerciseDates

UAmericanOpt

COptSpec

CStrike

CExerciseDates, CAmericanOpt)

Stock tree structure created by crrtree.
String = 'Call’' or 'Put’.

1-by-1 vector of strike price values.

1-by-1 vector of Settle dates.

For a European option (UAmericanOpt = 0):

1-by-1 vector of exercise dates. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (UAmericanOpt = 1):

1-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date. If only
one non-NaN date is listed, or if ExerciseDates
is 1-by-1, the option can be exercised between
the valuation date of the stock tree and the
single listed exercise date.

If UAmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If UAmericanOpt
= 1, the option is an American option.

NINST-by-1 list of string values 'Call' or 'Put'
of the compound option.

NINST-by-1 vector of strike price values. Each
row 1s the schedule for one option.

6-147

compoundbycrr

Description

6-148

CSettle 1-by-1 vector containing the settlement or trade
date.
CExerciseDates For a European option (CAmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (CAmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be
exercised on any tree date between or including
the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates is
NINST-by-1, the option can be exercised between
the valuation date of the stock tree and the
single listed exercise date.

CAmericanOpt (Optional) If CAmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If
CAmericanOpt = 1, the option is an American
option.

[Price, PriceTree] = compoundbycrr(CRRTree, UOptSpec,
UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates
the value of a compound option.

Price is a NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

compoundbycrr

Examples Price a compound option using a CRR binomial tree.

Load the file deriv.mat, which provides CRRTree. The CRRTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat

Set the required values. Other arguments will use defaults.

UOptSpec = 'Call’;

UStrike 130;

USettle = '01-Jan-2003';
UExerciseDates = '01-Jan-2006"';
UAmericanOpt = 1;

COptSpec = 'Put';

CStrike = 5;

CSettle = '01-Jan-2003';
CExerciseDates = '01-Jan-2005';

Price = compoundbycrr(CRRTree, UOptSpec, UStrike, USettle,
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle,

CExerciseDates)

Price =

2.8482
References Rubinstein, Mark, “Double Trouble,” Risk 5, 1991, p. 73.
See Also crrtree, instcompound

6-149

compoundbyeqp

Purpose Price compound option from EQP binomial tree

Syntax [Price, PriceTree] = compoundbyeqp(EQPTree, UOptSpec, UStrike,
USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt)

Arguments
EQPTree Stock tree structure created by eqptree.
UOptSpec String = 'Call' or 'Put’.
UStrike 1-by-1 vector of strike price values.
USettle 1-by-1 vector of Settle dates.
UExerciseDates For a European option (UAmericanOpt = 0):

1-by-1 vector of exercise dates. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (UAmericanOpt = 1):

1-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date. If only
one non-NaN date is listed, or if ExerciseDates
is 1-by-1, the option can be exercised between
the valuation date of the stock tree and the
single listed exercise date.

UAmericanOpt If UAmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If UAmericanOpt
= 1, the option is an American option.

COptSpec NINST-by-1 list of string values 'Call' or 'Put'
of the compound option.

CStrike NINST-by-1 vector of strike price values. Each
row 1s the schedule for one option.

6-150

compoundbyeqp

Description

CSettle 1-by-1 vector containing the settlement or trade
date.
CExerciseDates For a European option (CAmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row
is the schedule for one option. For a European
option, there is only one exercise date, the
option expiry date.

For an American option (CAmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be
exercised on any tree date between or including
the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates

is NINST-by-1, the option can be exercised
between the valuation date of the stock tree
and the single listed exercise date.

CAmericanOpt If CAmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If CAmericanOpt
= 1, the option is an American option.

[Price, PriceTree] = compoundbyeqp(EQPTree, UOptSpec,
UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates
the value of a compound option.

Price is a NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

6-151

compoundbyeqp

Examples

References

See Also

6-152

Price a compound option using an EQP equity tree.

Load the file deriv.mat, which provides EQPTree. The EQPTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat

Set the required values. Other arguments will use defaults.

UOptSpec = 'Call’;

UStrike = 130;

USettle = '01-Jan-2003';
UExerciseDates = '01-Jan-2006"';
UAmericanOpt = 1;

COptSpec = 'Put';

CStrike = 5;

CSettle = '01-Jan-2003';
CExerciseDates = '01-Jan-2005";

Price = compoundbyeqp(EQPTree, UOptSpec, UStrike, USettle,
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle,
CExerciseDates)

Price =

3.3931

Rubinstein, Mark, “Double Trouble,” Risk 5, 1991, p. 73

eqptree, instcompound

compoundbyitt

Purpose

Syntax

Arguments

Price compound options using implied trinomial tree (ITT)

[Price, PriceTree] = compoundbyitt(ITTTree, UOptSpec, UStrike,
USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt)

ITTTree Stock tree structure created by itttree.
UOptSpec String = 'call' or 'put'.

UStrike 1-by-1 vector of strike price values.
USettle 1-by-1 vector of Settle dates.

UExerciseDates For a European option (UAmericanOpt = 0):

1-by-1 vector of exercise dates. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (UAmericanOpt = 1):

1-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date. If only
one non-NaN date is listed, or if ExerciseDates is
1-by-1, the option can be exercised between the
valuation date of the stock tree and the single
listed exercise date.

UAmericanOpt If UAmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If UAmericanOpt =
1, the option is an American option.

COptSpec NINST-by-1 list of string values 'Call' or 'Put'
of the compound option.

CStrike NINST-by-1 vector of strike price values. Each
row 1s the schedule for one option.

6-153

compoundbyitt

Description

6-154

CSettle 1-by-1 vector containing the settlement or trade
date.

CExerciseDates For a European option (CAmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row

is the schedule for one option. For a European
option, there is only one exercise date, the option
expiry date.

For an American option (CAmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries.
For each instrument, the option can be exercised
on any tree date between or including the pair
of dates on that row. If only one non-NaN date

is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation
date of the stock tree and the single listed
exercise date.

CAmericanOpt (Optional) If CAmericanOpt = 0, NaN, or is
unspecified, the option is a European option. If
CAmericanOpt = 1, the option is an American
option.

[Price, PriceTree] = compoundbyitt(ITTTree, UOptSpec,
UStrike, USettle, UExerciseDates, UAmericanOpt, COptSpec,
CStrike, CSettle, CExerciseDates, CAmericanOpt) calculates the
value of a compound option by an ITT trinomial tree.

Price is a NINST-by-1 vector of expected prices at time 0.

PriceTree is a tree structure with a vector of instrument prices at
each node.

Note The Settle date is set to the ValuationDate of the stock tree.

compoundbyitt

Examples Price a compound option using an ITT tree.

Load the file deriv.mat which provides the ITTTree. The ITTTree
structure contains the stock specification and time information needed
to price the option.

load deriv.mat

Set the required values. Other arguments will use defaults.

UOptSpec = 'Call’;

UStrike = 99;

USettle = '01-Jan-2006"';
UExerciseDates = '01-Jan-2010"';
UAmericanOpt = 1;

COptSpec = 'Put';

CStrike = 5;

CSettle = '01-Jan-2006"';
CExerciseDates = '01-Jan-2010"';

Price = compoundbyitt(ITTTree, UOptSpec, UStrike, USettle,
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle,

CExerciseDates)

Price =

2.727
References Rubinstein, Mark, “Double Trouble,” Risk 5, 1991.
See Also instcompound, itttree

6-155

crrprice

Purpose Instrument prices from CRR tree
Syntax [Price, PriceTree] = crrprice(CRRTree, InstSet, Options)
Arguments
CRRTree Interest-rate tree structure created by crrtree.
InstSet Variable containing a collection of NINST instruments.

Instruments are categorized by type; each type can
have different data fields. The stored data field

is a row vector or string for each instrument. For
more information about how to create the InstSet
structure, see instadd.

Options (Optional) Derivatives pricing options structure
created with derivset.

Description [Price, PriceTree] = crrprice(CRRTree, InstSet, Options)
computes stock option prices using a CRR binomial tree created with
crrtree.

Price is a number of instruments (NINST)-by-1 vector of prices for
each instrument. The prices are computed by backward dynamic
programming on the stock tree. If an instrument cannot be priced, NaN
is returned.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and a vector of observation times for each node.

PriceTree.PTree contains the prices.
PriceTree.tObs contains the observation times.
PriceTree.dObs contains the observation dates.

crrprice handles instrument types: 'Asian', 'Barrier', 'Compound’,
'Lookback', 'OptStock'. See instadd to construct defined types.

Related single-type pricing functions are:

6-156

crrprice

® asianbycrr: Price an Asian option from a CRR tree.

® barrierbycrr: Price a barrier option from a CRR tree.

e compoundbycrr: Price a compound option from a CRR tree.
® lookbackbycrr: Price a lookback option from a CRR tree.

® optstockbycrr: Price an American, Bermuda, or European option
from a CRR tree.

Examples Load the CRR tree and instruments from the data file deriv.mat. Price
the barrier and lookback options contained in the instrument set.

load deriv.mat;
CRRSubSet = instselect(CRRInstSet, 'Type',
{'Barrier', 'Lookback'});

instdisp(CRRSubSet)

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec ...

1 Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui ...
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity
2 Lookback call 115 01-Jan-2003 01-Jan-2006 0 Lookback1l 7
3 Lookback call 115 01-Jan-2003 01-Jan-2007 0 Lookback2 9
[Price, PriceTree] = crrprice(CRRTree, CRRSubSet)
Price =
12.1272
7.6015
11.7772
PriceTree =

FinObj: 'BinPriceTree’

6-157

crrprice

PTree:

See Also

6-158

{1x5 cell}
[01 23 4]
[731582 731947 732313 732678 733043]

treeviewer (PriceTree, CRRSubSet)

=T
T [Yo ot Tooh Winde (0
Salcton [r—
 ban Tt
1 Hode and Chidhen Clagem
e
e
o bostmers [Bamet |
a
o ((
8. . wn
wl__
<
L R T Ry
e | om |
Barrier]

B [Yo powt ok Mndow teo

B fde e [t Do e beb

You can use treeviewer to see the prices of these three instruments
along the price tree.

© HedewdCiden Dl

inatmant

E—

_te | om |

 Pah

1 Hode and Chidhen Clagem

T Tatle

e

Inttrers.

Lok back? |

. nm

P - |

crrsens, crrtree, instadd

Lookback?

Lookback1

crrsens

Purpose

Syntax

Arguments

Description

Instrument prices and sensitivities from CRR tree

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet,
Options)

CRRTree Interest-rate tree structure created by crrtree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet,
Options) computes dollar sensitivities and prices for instruments
using a binomial tree created with crrtree. NINST instruments from a
financial instrument variable, InstSet, are priced. crrsens handles
instrument types: 'Asian’', 'Barrier', 'Compound', 'Lookback’,
'OptStock'. See instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change
of instrument prices with respect to changes in the stock price. Delta
is computed by finite differences in calls to crrtree. See crrtree for
information on the stock tree.

Gamma is an NINST-by-1 vector of gammas, representing the rate of
change of instrument deltas with respect to the changes in the stock
price. Gamma is computed by finite differences in calls to crrtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change
of instrument prices with respect to the changes in the volatility of the
stock. Vega is computed by finite differences in calls to crrtree.

6-159

crrsens

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Examples Load the CRR tree and instruments from the data file deriv.mat.
Compute the Delta and Gamma sensitivities of the barrier and lookback
options contained in the instrument set.

load deriv.mat;
CRRSubSet = instselect(CRRInstSet, 'Type',
{'Barrier', 'Lookback'});

instdisp(CRRSubSet)

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec ...

1 Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui ...

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity
2 Lookback call 115 01-Jan-2003 01-Jan-2006 0 Lookback1l 7
3 Lookback call 115 01-Jan-2003 01-Jan-2007 0 Lookback2 9

[Delta, Gamma] = crrsens(CRRTree, CRRSubSet)
Delta =
0.6885
0.6049
0.8187
Gamma =
0.0310

-0.0000
0.0000

6-160

crrsens

See Also crrprice, crrtree

6-161

crriimespec

Purpose
Syntax

Arguments

Description

Examples

6-162

Specify time structure for CRR tree

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)

ValuationDate Scalar date indicating the pricing date and first
observation in the tree. A serial date number or
date string.

Maturity Scalar date indicating depth of the tree.
NumPeriods Scalar determining number of time steps in the
tree.

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
sets the number of levels and node times for a CRR binomial tree.

TimeSpec is a structure specifying the time layout for a CRR binomial
tree.

Specify a four-period CRR tree with time steps of 1 year.

ValuationDate = '1-July-2002';
Maturity = '1-July-2006"';
TimeSpec = crrtimespec(ValuationDate, Maturity, 4)

TimeSpec

FinObj: 'BinTimeSpec'
ValuationDate: 731398
Maturity: 732859
NumPeriods: 4
Basis: O
EndMonthRule: 1
tObs: [0 1 2 3 4]
dObs: [1x5 double]

crriimespec

See Also crrtree, stockspec

6-163

crriree

Purpose
Syntax

Arguments

Description

Examples

6-164

Construct CRR stock tree

CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)

StockSpec Stock specification. See stockspec for information on
creating a stock specification.

RateSpec Interest-rate specification for the initial risk free rate
curve. See intenvset for information on declaring
an interest-rate variable.

TimeSpec Tree time layout specification. Defines the
observation dates of the CRR binomial tree. See
crrtimespec for information on the tree structure.

Note The standard CRR tree assumes a constant interest rate, but
RateSpec allows you to specify an interest-rate curve with varying
rates. If you specify variable interest rates, the resulting tree will not
be a standard CRR tree.

CRRTree = crrtree(StockSpec, RateSpec, TimeSpec) creates a
structure specifying the time layout for a CRR binomial tree.

Using the data provided, create a stock specification (StockSpec), rate
specification (RateSpec), and tree time layout specification (TimeSpec).
Then use these specifications to create a CRR tree with crrtree.

Sigma = 0.20;

AssetPrice = 50;

DividendType = 'cash';

DividendAmounts = [0.50; 0.50; 0.50; 0.50];

ExDividendDates = {'03-Jan-2003'; 'O1-Apr-2003'; '05-July-2003';

crriree

'01-0ct-2003"}

StockSpec = stockspec(Sigma, AssetPrice, DividendType,
DividendAmounts, ExDividendDates)

StockSpec =

FinObj: 'StockSpec'
Sigma: 0.2000
AssetPrice: 50
DividendType: 'cash'
DividendAmounts: [4x1 double]
ExDividendDates: [4x1 double]

RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'01-Jan-2003', 'EndDates', '31-Dec-2003')

RateSpec =

FinObj: 'RateSpec'

Compounding: 2

Disc: 0.9519

Rates: 0.0500

EndTimes: 1.9945
StartTimes: 0

EndDates: 731946

StartDates: 731582

ValuationDate: 731582
Basis: 0
EndMonthRule: 1

ValuationDate = '1-Jan-2003';
Maturity = '31-Dec-2003';

TimeSpec = crrtimespec(ValuationDate, Maturity, 4)

TimeSpec =

6-165

crriree

FinObj:
ValuationDate:
Maturity:
NumPeriods:
Basis:
EndMonthRule:
tObs:

dObs:

'BinTimeSpec'

731582

731946

4

0

1

[0 0.2493 0.4986 0.7479 0.9972]
[731582 731673 731764 731855 731946]

CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)

CRRTree =

FinObj: 'BinStockTree'
Method: 'CRR'

StockSpec: [1x1
TimeSpec: [1x1
RateSpec: [1x1

struct]
struct]
struct]

tObs: [0 0.2493 0.4986 0.7479 0.9972]

dObs: [731

582 731672 731763 731856 731946]

STree: {1x5 cell}
UpProbs: [0.5370 0.5370 0.5370 0.5370]

Use treeviewer to observe the tree you have created.

6-166

crriree

See Also

) Tree ¥iewer ;|g|5|
File Edit Yiew Insert Tools Window Help
r Tree Visualization
; ; ; ; ; Selection Wisualization
&+ Path " Table
" MNode and Children ' Diagram
" Plat

48.04

Help

Cloze

crrtimespec, intenvset, stockspec

6-167

cviree

Convert inverse-discount tree to interest-rate tree

cvtree(Tree)

Heath-Jarrow-Morton, Black-Derman-Toy, Hull-White,

or Black-Karasinski tree structure using inverse-discount
notation for forward rates.

cvtree(Tree) converts a tree structure using

inverse-discount notation to a tree structure using rate notation for

Purpose
Syntax RateTree =
Arguments
Tree
Description RateTree =
forward rates.
Examples

Hull-White tree displaying interest-rate notation.

load deriv.mat;

HWTree

HWTree =

FinObj:
VolSpec:
TimeSpec:
RateSpec:
tObs:
dObs:
CFlowT:
Probs:
Connect:
FwdTree:

'"HWFwdTree'

[1x1 struct]

[1x1 struct]

[1x1 struct]

[012 3]

[731947 732313 732678 733043]
{[4x1 double] [3x1 double]
{[3x1 double] [3x3 double]
{[2] [2 3 4] [2 23 4 4]}
{1x4 cell}

[2x1 double]
[3x5 double]}

HWTree.FwdTree{1}

6-168

Convert a Hull-White tree using inverse-discount notation to a

[41}

cviree

ans =
1.0279

HWTree.FwdTree{2}

ans =
1.0528 1.0356 1.0186

Use treeviewer to display the path of interest rates expressed in

inverse-discount notation.

treeviewer (HWTree)

) Tree Yiewer (=]]
File Edit Wiew Insert Tools Desktop Window Help N
r Tree Yisualization
; ; ; ; Selection Wisualization
" path € Table
{* Mode and Children {* Dizgram
" Flot
1.02
1.04
1.05
. . . .
0 1 2 3
Help | Close |

Use cvtree to convert the inverse-discount notation to interest-rate

notation.

RTree = cvtree(HWTree)

6-169

cviree

RTree =

FinObj: 'HWRateTree'
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3]
dObs: [731947 732313 732678 733043]
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}
Connect: {[2] [2 3 4] [2 2 3 4 4]}
RateTree: {1x4 cell}

RTree.RateTree{1}

ans =
0.0275

RTree.RateTree{2}

ans =
0.0514 0.0349 0.0185

Now use treeviewer to display the converted tree, showing the path
of interest rates expressed as forward rates.

6-170

cviree

) Tree Yiewer (=]]
File Edit Wiew Insert Tools Desktop Window Help N
r Tree Yisualization
; ; ; ; Selection Wisualization
" path € Table
{* Mode and Children {* Dizgram
" Flot
0.02
0.03
0.05
0 1 2 3
Help Close
See Also disc2rate, rate2disc

6-171

date2time

Purpose Time and frequency from dates
Syntax [Times, F] = date2time(Settle, Dates, Compounding, Basis,
EndMonthRule)
Arguments
Settle Settlement date. A vector of serial date numbers
or date strings.
Dates Vector of dates corresponding to the compounding
value.
Compounding (Optional) Scalar value representing the rate at

6-172

which the input zero rates were compounded
when annualized. This argument determines the
formula for the discount factors:

Compounding =1, 2, 3, 4, 6, 12 (Default =2.)

Disc = (1 + Z/F)"(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T =
F is 1 year.

Compounding = 365

Disc = (1 + Z/F)~(-T), where F is the number
of days in the basis year and T is a number of
days elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

date2time

Basis

EndMonthRule

(Optional) Day-count basis of the instrument. A
vector of integers.

® (0 = actual/actual (default)
1 =30/360 (SIA)

® 2 = actual/360

® 3 = actual/365

* 4 =30/360 (BMA)

® 5=30/360 (ISDA)

® 6 =30/360 (European)

® 7 = actual/365 (Japanese)
® 8 = actual/actual ICMA)
® 9 =actual/360 (ICMA)

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
e 13 =BUS/252

(Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0

= ignore rule, meaning that a bond’s coupon
payment date is always the same numerical day
of the month. 1 = set rule on (default), meaning
that a bond’s coupon payment date is always the
last actual day of the month.

6-173

date2time

Description [Times, F] = date2time(Settle, Dates, Compounding, Basis,
EndMonthRule) computes time factors appropriate to compounded rate
quotes beyond the settlement date.

Times is a vector of time factors.

F 1s a scalar of related compounding frequencies.

Note To obtain accurate results from this function, the Basis and
Dates arguments must be consistent. If the Dates argument contains
months that have 31 days, Basis must be one of the values that allow
months to contain more than 30 days; for example, Basis =0, 3, or 7.

date2time is the inverse of time2date.

See Also cftimes in Financial Toolbox documentation

disc2rate, rate2disc, time2date

6-174

datedisp

Purpose

Syntax

Arguments

Description

Examples

Display date entries

datedisp(NumMat, DateForm)
CharMat = datedisp(NumMat, DateForm)

NumMat Numeric matrix to display.

DateForm (Optional) Date format. See datestr for available
and default format flags.

datedisp(NumMat, DateForm) displays the matrix with the

serial dates formatted as date strings, using a matrix with mixed
numeric entries and serial date number entries. Integers between
datenum('01-Jan-1900') and datenum('01-Jan-2200"') are assumed
to be serial date numbers, while all other values are treated as numeric
entries.

CharMat is a character array representing NumMat. If no output variable

is assigned, the function prints the array to the display (CharMat =
datedisp(NumMat, DateForm)).

NumMat = [730730, 0.03, 1200, 730100;
730731, 0.05, 1000, NaN]
NumMat =
1.0e+05 *

7.3073 0.0000 0.0120 7.3010

7.3073 0.0000 0.0100 NaN
datedisp (NumMat)

01-Sep-2000 0.03 1200 11-Dec-1998

02-Sep-2000 0.05 1000 NaN

6-175

datedisp

Remarks This function is identical to the datedisp function in Financial Toolbox
software.
See Also datenum, datestr in Financial Toolbox documentation

6-176

derivget

Purpose
Syntax

Arguments

Description

Examples

Get derivatives pricing options

Value = derivget(Options, 'Parameter')

Options Existing options specification structure, probably
created from previous call to derivset.

Parameter Must be 'Diagnostics’', 'Warnings', 'ConstRate’,
or 'BarrierMethod'. It is sufficient to type only
the leading characters that uniquely identify the
parameter. Case is ignored for parameter names.

Value = derivget(Options, 'Parameter') extracts the value of
the named parameter from the derivative options structure Options.
Parameter values can be 'off' or 'on', except for 'BarrierMethod’,
which can be 'unenhanced' or 'interp'. Specifying 'unenhanced'
uses no correction calculation. Specifying 'interp' uses an enhanced
valuation interpolating between nodes on barrier boundaries.

Example 1. Create an Options structure with the value of Diagnostics
set to 'on'.

Options = derivset('Diagnostics','on')

Use derivget to extract the value of Diagnostics from the Options
structure.

Value = derivget(Options, 'Diagnostics')
Value =
on

Example 2. Use derivget to extract the value of ConstRate.

6-177

derivget

Value = derivget(Options, 'ConstRate')
Value =
on

Because the value of 'ConstRate' was not previously set with
derivset, the answer represents the default setting for 'ConstRate"'.

Example 3. Find the value of 'BarrierMethod' in this structure.

derivget(Options , 'BarrierMethod')
ans =

unenhanced

See Also barrierbycrr, barrierbyeqp, derivset

6-178

derivset

Purpose

Syntax

Arguments

Set or modify derivatives pricing options

Options = derivset(Options, 'Parameteri', Valuei,
'Parameter4’', Value4)

Options = derivset(0ldOptions, NewOptions)

Options = derivset

derivset

Options

Parametern

Valuen

(Optional) Existing options specification structure,
probably created from a previous call to derivset.

The parameter must be 'Diagnostics', 'Warnings',
'ConstRate', or 'BarrierMethod'. Parameters can
be entered in any order.

(BDT, BK, HJM, or HW pricing only) The parameter
values for the following three options can be 'on' or
‘off':

e 'Diagnostics' 'on' generates diagnostic
information. The default is 'Diagnostics' 'off'.

® 'Warnings' 'on' (default) displays a warning
message when executing a pricing function.

® 'ConstRate' 'on' (default) assumes a constant
rate between tree nodes.

For pricing barrier options, the 'BarrierMethod'
pricing option can be 'unenhanced' (default)

or 'interp'. Specifying 'unenhanced' uses no
correction calculation. Specifying 'interp' uses an
enhanced valuation interpolating between nodes on
barrier boundaries.

6-179

derivset

Description

Examples

6-180

0ldOptions Existing options specification structure.

NewOptions New options specification structure.

Options = derivset(Options, 'Parameteri', Valueil,
'Parameter4', Value4) creates a derivatives pricing options structure
Options in which the named parameters have the specified values. Any
unspecified value is set to the default value for that parameter when
Options is passed to the pricing function. It is sufficient to type only the
leading characters that uniquely identify the parameter name. Case is
also ignored for parameter names.

If the optional input argument Options is specified, derivset modifies
an existing pricing options structure by changing the named parameters
to the specified values.

Note For parameter values, correct case and the complete string are
required; if an invalid string is provided, the default is used.

Options = derivset(0ldOptions, NewOptions) combines an
existing options structure 01dOptions with a new options structure
NewOptions. Any parameters in NewOptions with nonempty values
overwrite the corresponding old parameters in 01dOptions.

Options = derivset creates an options structure Options whose fields
are set to the default values.

derivset with no input or output arguments displays all parameter
names and information about their possible values.

Options = derivset('Diagnostics','on')

enables the display of additional diagnostic information that appears
when executing pricing functions.

derivset

See Also

Options = derivset(Options, 'ConstRate', 'off')

changes the ConstRate parameter in the existing Options structure so
that the assumption of constant rates between tree nodes no longer

applies.

With no input or output arguments derivset displays all parameter
names and information about their possible values.

derivset

Diagnostics:
Warnings:
ConstRate:
BarrierMethod:

[on | {off} 1
[{on} | off]
[{on} | off]

|

[{unenhanced} interp]

barrierbycrr, barrierbyeqp, derivget

6-181

disc2rate

Purpose Interest rates from cash flow discounting factors
Syntax Usage 1: Interval points are input as times in periodic units.
Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes, Basis,
EndMonthRule)
Usage 2: ValuationDate is passed and interval points are input as
dates.
[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,

EndDates, StartDates, ValuationDate, Basis, EndMonthRule)

Arguments

Compounding Scalar value representing the rate at which
the input zero rates were compounded when
annualized. This argument determines the
formula for the discount factors:

Compounding =1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)"(-T), where F 1s the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T =
F is 1 year.

Compounding = 365

Disc = (1 + Z/F)~(-T), where F is the number
of days in the basis year and T is a number of
days elapsed computed by basis.

Compounding = -1
Disc = exp(-T*Z), where T is time in years.

Disc Number of points (NPOINTS) by number of
curves (NCURVES) matrix of discounts. Disc are
unit bond prices over investment intervals from
StartTimes, when the cash flow is valued, to
EndTimes, when the cash flow is received.

6-182

disc2rate

EndTimes

StartTimes

EndDates

StartDates

ValuationDate

Basis

NPOINTS-by-1 vector or scalar of times in periodic
units ending the interval to discount over.

(Optional) NPOINTS-by-1 vector or scalar of times
in periodic units starting the interval to discount
over. Default = 0.

NPOINTS-by-1 vector or scalar of serial maturity
dates ending the interval to discount over.

(Optional) NPOINTS-by-1 vector or scalar of serial
dates starting the interval to discount over.
Default = ValuationDate. StartDates must be
earlier than EndDates.

Scalar value in serial date number form
representing the observation date of the
investment horizons entered in StartDates and
EndDates. Required in Usage 2. Omitted or

assed ag an empty matrix to invoke Usage 1.
FOptlonal) Day-count basis of the instrument. A

vector of integers.

® (0 = actual/actual (default)
1 =30/360 (SIA)

2 = actual/360

3 = actual/365

* 4 =30/360 (BMA)

® 5=30/360 (ISDA)

® 6 =230/360 (European)

e 7 = actual/365 (Japanese)
® 8 = actual/actual ICMA)
® 9 = actual/360 (ICMA)

® 10 = actual/365 (ICMA)

6-183

disc2rate

Description

6-184

e 11 =30/360E (ICMA)
® 12 = actual/actual (ISDA)
e 13 = BUS/252

EndMonthRule (Optional) End-of-month rule. A vector. This rule
applies only when Maturity is an end-of-month
date for a month having 30 or fewer days. 0
= 1gnore rule, meaning that a bond’s coupon
payment date is always the same numerical day
of the month. 1 = set rule on (default), meaning
that a bond’s coupon payment date is always the
last actual day of the month.

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes,
Basis, EndMonthRule) and [Rates, EndTimes, StartTimes]

= disc2rate(Compounding, Disc, EndDates, StartDates,
ValuationDate, Basis, EndMonthRule) convert cash flow discounting
factors to interest rates. disc2rate computes the yields over a series
of NPOINTS time intervals given the cash flow discounts over those
intervals. NCURVES different rate curves can be translated at once if
they have the same time structure. The time intervals can represent

a zero or a forward curve.

Rates is an NPOINTS-by-NCURVES column vector of yields in decimal form
over the NPOINTS time intervals.

StartTimes is an NPOINTS-by-1 column vector of times starting the
interval to discount over, measured in periodic units.

EndTimes is an NPOINTS-by-1 column vector of times ending the interval
to discount over, measured in periodic units.

If Compounding = 365 (daily), StartTimes and EndTimes are measured
in days. The arguments otherwise contain values, T, computed from
SIA semiannual time factors, Tsemi, by the formula T = Tsemi/2 * F,
where F is the compounding frequency.

disc2rate

Specify the investment intervals with either input times (Usage 1)
or input dates (Usage 2). Entering ValuationDate invokes the date
interpretation; omitting ValuationDate invokes the default time
interpretations.

See Also rate2disc, ratetimes

6-185

eqpprice

Purpose
Syntax

Arguments

Description

6-186

Instrument prices from EQP binomial tree

[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)

EQPTree Interest-rate tree structure created by eqptree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)
computes stock option prices using an EQP binomial tree created with
eqptree.

Price is a number of instruments (NINST)-by-1 vector of prices for
each instrument. The prices are computed by backward dynamic
programming on the stock tree. If an instrument cannot be priced, NaN
is returned.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and a vector of observation times for each node.

PriceTree.PTree contains the prices.
PriceTree.tObs contains the observation times.
PriceTree.dObs contains the observation dates.

eqgpprice handles instrument types: 'Asian', 'Barrier', 'Compound’,
'Lookback', 'OptStock'. See instadd to construct defined types.

Related single-type pricing functions are:

® asianbyeqp: Price an Asian option from an EQP tree.

eqpprice

Examples

® barrierbyeqp: Price a barrier option from an EQP tree.
e compoundbyeqp: Price a compound option from an EQP tree.
® lookbackbyeqp: Price a lookback option from an EQP tree.

® optstockbyeqp: Price an American, Bermuda, or European option
from an EQP tree.

Load the EQP tree and instruments from the data file deriv.mat. Price
the put options contained in the instrument set.

load deriv.mat;
EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec',

'‘Data', 'put')

instdisp(EQPSubSet)

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name..

1 OptStock put 105 01-Jan-2003 01-Jan-2006 0 Put 105..
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType..

2 Asian put 110 01-Jan-2003 01-Jan-2006 0 arithmetic..

3 Asian put 110 01-Jan-2003 01-Jan-2007 0 arithmetic..

[Price, PriceTree] = eqpprice(EQPTree, EQPSubSet)
Price =

2.6375

4.7444

3.9178

PriceTree =

FinObj: 'BinPriceTree’
PTree: {1x5 cell}

6-187

eqpprice
|

tObs: [0 1 2 3 4]
dObs: [731582 731947 732313 732678 733043]

You can use treeviewer to see the prices of these three instruments
along the price tree.

treeviewer (PriceTree, EQPSubSet)

ITTEE—— o ETEE—— o
O [t Yow jrowt Jook Wircow Heb O [t Yow jrowt Jook Wircow teb
Sorecton, Weskaton) it Viskraton
= Pyt o Table = Pyt o Table
1™ Hoxde and Chicren Cagam 1 Wode and Chidien Cagam
A A
n_...-n"'° Vannart [Pt D n_...-n-"" PP e |
s e T e
B B
« . " « . "
- -
- = » 284 - = ®am
8 8
= € = €
L] 1 2 £ 4 L] 1 2 £ 4
e | om | e | om |
Putl Asian11
=l2lx
Bl Edt Yew froet Tock Wedew Heb
Sdection Vinsshraton
= Pah o Tatde
™ Hode and Chidhen g
T Pa
T ==
a e
.
- o ®
B)
o e - nm
[] 1 F] E] 4
e | o |
Asian2
See Also egpsens, eqptimespec, eqptree

6-188

eqpsens

Purpose

Syntax

Arguments

Description

Instrument prices and sensitivities from EQP binomial tree

[Delta, Gamma, Vega, Price] = eqpsens(EQPTree, InstSet,
Options)

EQPTree Interest-rate tree structure created by eqptree.

InstSet Variable containing a collection of NINST instruments.
Instruments are categorized by type; each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

[Delta, Gamma, Vega, Price] = egpsens(EQPTree, InstSet,
Options) computes dollar sensitivities and prices for instruments
using a binomial tree created with eqptree. NINST instruments from a
financial instrument variable, InstSet, are priced. egpsens handles
instrument types: 'Asian', 'Barrier', 'Compound’', 'Lookback', and
'OptStock'. See instadd for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change
of instrument prices with respect to changes in the stock price. Delta
is computed by finite differences in calls to eqptree. See eqptree for
information on the stock tree.

Gamma is an NINST-by-1 vector of gammas, representing the rate of
change of instrument deltas with respect to the changes in the stock
price. Gamma is computed by finite differences in calls to eqptree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change
of instrument prices with respect to the changes in the volatility of the
stock. Vega is computed by finite differences in calls to egptree.

6-189

eqpsens

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Examples Load the EQP tree and instruments from the data file deriv.mat.
Compute the Delta and Gamma sensitivities of the put options contained
in the instrument set.

load deriv.mat;

EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec',

'‘Data', 'put')

instdisp (EQPSubSet)

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name..

1 OptStock put 105 01-Jan-2003 01-Jan-2006 0 Put 105..
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType..

2 Asian put 110 01-Jan-2003 01-Jan-2006 0 arithmetic..

3 Asian put 110 01-Jan-2003 01-Jan-2007 0 arithmetic..

[Delta, Gamma] = egpsens(EQPTree, EQPSubSet)
Delta =

-0.2336

-0.5443

-0.4516

Gamma =

0.0218
0.0000

6-190

eqpsens

0.0000

See Also eqpprice, eqptree

6-191

eqptimespec

Purpose Specify time structure for EQP binomial tree
Syntax TimeSpec = egptimespec(ValuationDate, Maturity, NumPeriods)
Arguments

ValuationDate Scalar date indicating the pricing date and first

observation in the tree. A serial date number or
date string.

Maturity Scalar date indicating depth of the tree.
NumPeriods Scalar determining number of time steps in the
tree.
Description TimeSpec = egptimespec(ValuationDate, Maturity, NumPeriods)

sets the number of levels and node times for an equal probabilities tree.
TimeSpec is a structure specifying the time layout for an equal
probabilities tree.

Examples Specify a four-period tree with time steps of 1 year.

ValuationDate = '1-July-2002';
Maturity = '1-July-2006";
TimeSpec = eqgptimespec(ValuationDate, Maturity, 4)

TimeSpec

FinObj: 'BinTimeSpec'
ValuationDate: 731398
Maturity: 732859
NumPeriods: 4
Basis: O
EndMonthRule: 1
tObs: [0 1 2 3 4]
dObs: [1x5 double]

6-192

eqptimespec

See Also egptree, stockspec

6-193

eqptree

Purpose
Syntax

Arguments

Description

Examples

6-194

Construct EQP stock tree

EQPTree = eqgptree(StockSpec, RateSpec, TimeSpec)

StockSpec Stock specification. See stockspec for information on
creating a stock specification.

RateSpec Interest-rate specification for the initial risk free rate
curve. See intenvset for information on declaring
an interest-rate variable.

TimeSpec Tree time layout specification. Defines the
observation dates of the equal probabilities binomial
tree. See eqptimespec for information on the tree
structure.

Note The standard equal probabilities tree assumes a constant interest
rate, but RateSpec allows you to specify an interest-rate curve with
varying rates. If you specify variable interest rates, the resulting tree
will not be a standard equal probabilities tree.

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec) constructs
an equal probabilities stock tree.

EQPTree is a MATLAB structure specifying the time layout for an equal
probabilities stock tree.

Using the data provided, create a stock specification (StockSpec), rate
specification (RateSpec), and tree time layout specification (TimeSpec).
Then use these specifications to create a CRR tree with crrtree.

Sigma = 0.20;
AssetPrice = 50;

eqptree

DividendType = 'cash';

DividendAmounts = [0.50; 0.50; 0.50; 0.50];

ExDividendDates = {'03-Jan-2003'; '0O1-Apr-2003'; '05-July-2003';
'01-0ct-2003'}

StockSpec = stockspec(Sigma, AssetPrice, DividendType,
DividendAmounts, ExDividendDates)
StockSpec =

FinObj: 'StockSpec'
Sigma: 0.2000
AssetPrice: 50
DividendType: 'cash'’
DividendAmounts: [4x1 double]
ExDividendDates: [4x1 double]

RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'01-Jan-2003', 'EndDates', '31-Dec-2003')

RateSpec =

FinObj: 'RateSpec’

Compounding: 2

Disc: 0.9519

Rates: 0.0500

EndTimes: 1.9945
StartTimes: 0

EndDates: 731946

StartDates: 731582

ValuationDate: 731582
Basis: 0
EndMonthRule: 1

ValuationDate = '1-Jan-2003';

Maturity = '31-Dec-2003';
TimeSpec = eqptimespec(ValuationDate, Maturity, 4)

6-195

eqptree

TimeSpec =

FinObj:
ValuationDate:
Maturity:
NumPeriods:
Basis:
EndMonthRule:
tObs:

dObs:

'BinTimeSpec'

731582

731946

4

0

1

[0 0.2493 0.4986 0.7479 0.9972]
[731582 731673 731764 731855 731946]

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)

EQPTree

FinObj: 'BinStockTree'
Method: 'EQP'

StockSpec: [1x1
TimeSpec: [1x1
RateSpec: [1x1

struct]
struct]
struct]

tObs: [0 0.2493 0.4986 0.7479 0.9972]

dObs: [731

582 731672 731763 731856 731946]

STree: {1x5 cell}
UpProbs: [0.5000 0.5000 0.5000 0.5000]

Use treeviewer to observe the tree you have created.

6-196

eqptree

See Also

) Tree ¥iewer ;|g|5|
File Edit Yiew Insert Tools Window Help
r Tree Visualization
; ; ; ; ; Selection Wisualization
&+ Path " Table
" MNode and Children ' Diagram
" Plat

49.47

Help

Cloze

eqptimespec, intenvset, stockspec

6-197

fixedbybdt

Purpose Price fixed-rate note from BDT interest-rate tree

Syntax [Price, PriceTree] = fixedbybdt(BDTTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)

Arguments

BDTTree Interest-rate tree structure created by bdttree.
CouponRate Decimal annual rate.

Settle Settlement dates. Number of instruments
(NINST)-by-1 vector of dates representing the
settlement dates of the fixed-rate note.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the fixed-rate note.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.
® (0 = actual/actual (default)
1 =30/360 (SIA)
2 = actual/360
3 = actual/365
4 = 30/360 (BMA)
5 = 30/360 (ISDA)
6 = 30/360 (European)
7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

6-198

fixedbybdt

Description

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
e 13 = BUS/252

Principal (Optional) The notional principal amount. Default
=100.
Options (Optional) Derivatives pricing options structure

created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

[Price, PriceTree] = fixedbybdt(BDTTree, CouponRate,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule) computes the price of a fixed-rate note from a BDT
interest-rate tree.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at
time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.

The Settle date for every fixed-rate note is set to the ValuationDate of
the BDT tree. The fixed-rate note argument Settle is ignored.

6-199

fixedbybdt

Examples

See Also

6-200

Price a 10% fixed-rate note using a BDT interest-rate tree.

Load the file deriv.mat, which provides BDTTree. The BDTTree
structure contains the time and interest-rate information needed to
price the note.

load deriv.mat
Set the required values. Other arguments will use defaults.
CouponRate = 0.10;
Settle = '01-Jan-2000"';
Maturity = '01-Jan-2004';
Reset = 1;
Use fixedbybdt to compute the price of the note.
Price = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, Reset)

Price =

92.9974

bdttree, bondbybdt, capbybdt, cfbybdt, floatbybdt, floorbybdt,
swapbybdt

fixedbybk

Purpose

Syntax

Arguments

Price fixed-rate note from Black-Karasinski interest-rate tree

[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)

BKTree

CouponRate

Settle

Maturity

Reset

Basis

Interest-rate tree structure created by bktree.
Decimal annual rate.

Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the fixed-rate
note.

NINST-by-1 vector of dates representing the maturity
dates of the fixed-rate note.

(Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

(Optional) Day-count basis of the instrument. A
vector of integers.

® (0 = actual/actual (default)
1 =30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

6-201

fixedbybk

Description

Examples

6-202

10 = actual/365 (ICMA)
11 = 30/360E (ICMA)

12 = actual/actual ISDA)
13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal
amount. Default = 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

[Price, PriceTree] = fixedbybk(BKTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
computes the price of a fixed-rate note from a Black-Karasinski tree.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at
time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.

The Settle date for every fixed-rate note is set to the ValuationDate of
the BK tree. The fixed-rate note argument Settle is ignored.

Price a 5% fixed-rate note using a Black-Karasinski interest-rate tree.

Load the file deriv.mat, which provides BKTree. The BKTree structure
contains the time and interest-rate information needed to price the note.

load deriv.mat;

fixedbybk

Set the required values. Other arguments will use defaults.
CouponRate = 0.05;
Settle = '01-Jdan-2005';
Maturity = '01-Jan-2006"';

Use fixedbybk to compute the price of the note.

Price = fixedbybk(BKTree, CouponRate, Settle, Maturity)
Price =
103.5126
See Also bktree, bondbybk, capbybk, cfbybk, floatbybk, floorbybk, swapbybk

6-203

fixedbyhjm

Purpose Price fixed-rate note from HJM interest-rate tree

Syntax [Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)

Arguments

HJMTree Forward-rate tree structure created by hjmtree.
CouponRate Decimal annual rate.

Settle Settlement dates. Number of instruments
(NINST)-by-1 vector of dates representing the
settlement dates of the fixed-rate note.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the fixed-rate note.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.
® (0 = actual/actual (default)
1 = 30/360 (SIA)
2 = actual/360
3 = actual/365
4 = 30/360 (BMA)
5 = 30/360 (ISDA)
6 = 30/360 (European)
7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

6-204

fixedbyhjm

Description

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
* 13 = BUS/252

Principal (Optional) The notional principal amount. Default
= 100.
Options (Optional) Derivatives pricing options structure

created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

[Price, PriceTree] = fixedbyhjm(HJMTree, CouponRate,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule) computes the price of a fixed-rate note from a HIM
forward-rate tree.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at
time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PBush contains the clean prices.
PriceTree.AIBush contains the accrued interest.
PriceTree.tObs contains the observation times.

The Settle date for every fixed-rate note is set to the ValuationDate of
the HJM tree. The fixed-rate note argument Settle is ignored.

6-205

fixedbyhjm

Examples Price a 4% fixed-rate note using an HJM forward-rate tree.

Load the file deriv.mat, which provides HUMTree. The HUMTree
structure contains the time and forward-rate information needed to
price the note.

load deriv.mat

Set the required values. Other arguments will use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2000"';
Maturity = '01-Jan-2003';

Use fixedbyhjm to compute the price of the note.

Price = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity)
Price =
98.7159
See Also bondbyhjm, capbyhjm, cfbyhjm, floatbyhjm, floorbyhjm, hjmtree,
swapbyhjm

6-206

fixedbyhw

Purpose

Syntax

Arguments

Price fixed-rate note from Hull-White interest-rate tree

[Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)

HWTree

CouponRate

Settle

Maturity

Reset

Basis

Interest-rate tree structure created by hwtree.
Decimal annual rate.

Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the fixed-rate
note.

NINST-by-1 vector of dates representing the maturity
dates of the fixed-rate note.

(Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

(Optional) Day-count basis of the instrument. A
vector of integers.

® (0 = actual/actual (default)
1 =30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

6-207

fixedbyhw

Description

Examples

6-208

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
* 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal
amount. Default = 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

[Price, PriceTree] = fixedbyhw(HWTree, CouponRate, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
computes the price of a fixed-rate note from a Hull-White tree.

Price is an NINST-by-1 vector of expected prices of the fixed-rate note at
time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.

The Settle date for every fixed-rate note is set to the ValuationDate of
the HW tree. The fixed-rate note argument Settle is ignored.

Price a 5% fixed-rate note using a Hull-White interest-rate tree.

Load the file deriv.mat, which provides HWTree. The HWTree structure
contains the time and interest-rate information needed to price the note.

load deriv.mat;

fixedbyhw
|

Set the required values. Other arguments will use defaults.
CouponRate = 0.05;
Settle = '01-Jdan-2005';
Maturity = '01-Jan-2006"';

Use fixedbyhw to compute the price of the note.

Price = fixedbyhw(HWTree, CouponRate, Settle, Maturity)
Price =
103.5126
See Also bondbyhw, capbyhw, cfbyhw, floatbyhw, floorbyhw, hwtree, swapbyhw

6-209

fixedbyzero

Purpose Price fixed-rate note from set of zero curves
Syntax Price = fixedbyzero(RateSpec, CouponRate, Settle,
Maturity, Reset, Basis, Principal, EndMonthRule)
Arguments
RateSpec Structure containing the properties of an interest-rate
structure. See intenvset for information on creating
RateSpec.
CouponRate Decimal annual rate.
Settle Settlement date. Settle must be earlier than
Maturity.
Maturity Maturity date.
Reset (Optional) Frequency of payments per year. Default
=1.
Basis (Optional) Day-count basis of the instrument. A

vector of integers.

® (0 = actual/actual (default)
1 =30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

6-210

fixedbyzero

Description

Examples

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
e 13 = BUS/252

Principal (Optional) The notional principal amount. Default
=100.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

All inputs are either scalars or NINST-by-1 vectors unless otherwise
specified. Any date may be a serial date number or date string. An
optional argument may be passed as an empty matrix [].

Price = fixedbyzero(RateSpec, CouponRate, Settle, Maturity,
Reset, Basis, Principal, EndMonthRule) computes the price of a
fixed-rate note from a set of zero curves.

Price is a number of instruments (NINST) by number of curves
(NUMCURVES) matrix of fixed-rate note prices. Each column arises from
one of the zero curves.

Price a 4% fixed-rate note using a set of zero curves.

Load the file deriv.mat, which provides ZeroRateSpec, the
interest-rate term structure needed to price the note.

load deriv.mat
Set the required values. Other arguments will use defaults.
CouponRate = 0.04;

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

6-211

fixedbyzero

Use fixedbyzero to compute the price of the note.

Price = fixedbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price

98.7159

See Also bondbyzero, cfbyzero, floatbyzero, swapbyzero

6-212

floatbybdt

Purpose

Syntax

Arguments

Price floating-rate note from BDT interest-rate tree

[Price, PriceTree] = floatbybdt(BDTTree, Spread,
Settle, Maturity, Reset, Basis, Principal, Options,

EndMonthRule)

BDTTree
Spread

Settle

Maturity

Reset

Basis

Interest-rate tree structure created by bdttree.

Number of instruments (NINST)-by-1 vector of number
of basis points over the reference rate.

Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the floating-rate
note.

NINST-by-1 vector of dates representing the maturity
dates of the floating-rate note.

(Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

(Optional) Day-count basis of the instrument. A
vector of integers.

® (0 = actual/actual (default)
1 = 30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

7 = actual/365 (Japanese)
8 = actual/actual (ICMA)

6-213

floatbybdt

9 = actual/360 (ICMA)

® 10 = actual/365 (ICMA)
11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
e 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal
amount. Default = 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

Description [Price, PriceTree] = floatbybdt(BDTTree, Spread, Settle,
Maturity, Reset, Basis, Principal, Options,EndMonthRule)
computes the price of a floating-rate note from a BDT tree.

Price is an NINST-by-1 vector of expected prices of the floating-rate
note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.

The Settle date for every floating-rate note is set to the ValuationDate
of the BDT tree. The floating-rate note argument Settle is ignored.

6-214

floatbybdt

Examples

See Also

Price a 20 basis point floating-rate note using a BDT interest-rate tree.

Load the file deriv.mat, which provides BDTTree. The BDTTree
structure contains the time and interest-rate information needed to
price the note.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbybdt to compute the price of the note.

Price = floatbybdt(BDTTree, Spread, Settle, Maturity)
Price =
100.4865

bdttree, bondbybdt, capbybdt, cfbybdt, fixedbybdt, floorbybdt,
swapbybdt

6-215

floatbybk

Purpose

Syntax

Arguments

6-216

Price floating-rate note from Black-Karasinski interest-rate tree

[Price, PriceTree] = floatbybk(BKTree, Spread,
Settle, Maturity, Reset, Basis, Principal, Options,
EndMonthRule)

BKTree Interest-rate tree structure created by bktree.
Spread Number of instruments (NINST)-by-1 vector of number
of basis points over the reference rate.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the floating-rate
note.

Maturity NINST-by-1 vector of dates representing the maturity

dates of the floating-rate note.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.
® (0 = actual/actual (default)
1 = 30/360 (SIA)
2 = actual/360
3 = actual/365
4 = 30/360 (BMA)
5 = 30/360 (ISDA)
6 = 30/360 (European)
7 = actual/365 (Japanese)
8 = actual/actual (ICMA)

floatbybk

Description

Examples

9 = actual/360 (ICMA)

® 10 = actual/365 (ICMA)
11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
e 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal
amount. Default = 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

[Price, PriceTree] = floatbybk(BKTree, Spread, Settle,
Maturity, Reset, Basis, Principal, Options,EndMonthRule)
computes the price of a floating-rate note from a Black-Karasinski tree.

Price is an NINST-by-1 vector of expected prices of the floating-rate
note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.

The Settle date for every floating-rate note is set to the ValuationDate
of the BK tree. The floating-rate note argument Settle is ignored.

Price a 20 basis point floating-rate note using a Black-Karasinski
interest-rate tree.

6-217

floatbybk

See Also

6-218

Load the file deriv.mat, which provides BKTree. The BKTree structure
contains the time and interest-rate information needed to price the note.

load deriv.mat;

Set the required values. Other arguments will use defaults.
Spread = 20;

Settle = '01-Jan-2005';
Maturity = '01-Jan-2006"';

Use floatbybk to compute the price of the note.

Price = floatbybk(BKTree, Spread, Settle, Maturity)
Price =
100.3825

bktree, bondbybk, capbybk, cfbybk, fixedbybk, floorbybk, swapbybk

floatbyhjm

Purpose

Syntax

Arguments

Price floating-rate note from HJM interest-rate tree

[Price, PriceTree] = floatbyhjm(HJMTree, Spread, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)

HJMTree
Spread

Settle

Maturity

Reset

Basis

Forward-rate tree structure created by hjmtree.

Number of instruments (NINST)-by-1 vector of number

of basis points over the reference rate.

Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the floating-rate
note.

NINST-by-1 vector of dates representing the maturity

dates of the floating-rate note.

(Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

(Optional) Day-count basis of the instrument. A
vector of integers.

0 = actual/actual (default)
1 = 30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

6-219

floatbyhjm

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
* 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal
amount. Default = 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

Description [Price, PriceTree] = floatbyhjm(HJMTree, Spread, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
computes the price of a floating-rate note from an HJM tree.

Price is an NINST-by-1 vector of expected prices of the floating-rate
note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PBush contains the clean prices.
PriceTree.AIBush contains the accrued interest.
PriceTree.tObs contains the observation times.

The Settle date for every floating-rate note is set to the ValuationDate
of the HJM tree. The floating-rate note argument Settle is ignored.

Examples Price a 20 basis point floating-rate note using an HJM forward-rate tree.

Load the file deriv.mat, which provides HIMTree. The HUMTree
structure contains the time and forward-rate information needed to
price the note.

6-220

floatbyhjm

See Also

load deriv.mat

Set the required values. Other arguments will use defaults.
Spread = 20;
Settle = '01-Jdan-2000"';
Maturity = '01-Jan-2003';

Use floatbyhjm to compute the price of the note.

Price = floatbyhjm(HJMTree, Spread, Settle, Maturity)

Price

100.5529

bondbyhjm, capbyhjm, cfbyhjm, fixedbyhjm, floorbyhjm, hjmtree,
swapbyhijm

6-221

floatbyhw

Purpose Price floating-rate note from Hull-White interest-rate tree
Syntax [Price, PriceTree] = floatbyhw(HWTree, Spread, Settle,

Maturity, Reset, Basis, Principal, Options, EndMonthRule)
Arguments

HWTree Interest-rate tree structure created by hwtree.

Spread Number of instruments (NINST)-by-1 vector of number
of basis points over the reference rate.

Settle Settlement dates. NINST-by-1 vector of dates
representing the settlement dates of the floating-rate
note.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floating-rate note.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A

6-222

vector of integers.

® (0 = actual/actual (default)
1 = 30/360 (SIA)

® 2 = actual/360

® 3 = actual/365

* 4 =230/360 (BMA)

* 5=230/360 (ISDA)

® 6 = 30/360 (European)

® 7 = actual/365 (Japanese)
e 8 = actual/actual ICMA)

® 9 = actual/360 (ICMA)

floatbyhw

Description

Examples

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
e 13 = BUS/252

Principal (Optional) NINST-by-1 vector of the notional principal
amount. Default = 100.

Options (Optional) Derivatives pricing options structure
created with derivset.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

[Price, PriceTree] = floatbyhw(HWTree, Spread, Settle,
Maturity, Reset, Basis, Principal, Options, EndMonthRule)
computes the price of a floating-rate note from a Hull-White tree.

Price is an NINST-by-1 vector of expected prices of the floating-rate
note at time 0.

PriceTree is a structure of trees containing vectors of instrument prices
and accrued interest, and a vector of observation times for each node.

PriceTree.PTree contains the clean prices.
PriceTree.AITree contains the accrued interest.
PriceTree.tObs contains the observation times.

The Settle date for every floating-rate note is set to the ValuationDate
of the HW tree. The floating-rate note argument Settle is ignored.

Price a 20 basis point floating-rate note using a Hull-White interest-rate
tree.

Load the file deriv.mat, which provides HNTree. The HWTree structure
contains the time and interest-rate information needed to price the note.

6-223

floatbyhw

load deriv.mat

Set the required values. Other arguments will use defaults.
Spread = 20;

Settle = '01-Jdan-2005"';
Maturity = '01-Jan-2006"';

Use floatbyhw to compute the price of the note.

Price floatbyhw(HWTree, Spread, Settle, Maturity)

Price

100.3825

See Also bondbyhw, capbyhw, cfbyhw, fixedbyhw, floorbyhw, hwtree, swapbyhw

6-224

floatbyzero

Purpose

Syntax

Arguments

Price floating-rate note from set of zero curves

Price = floatbyzero(RateSpec, Spread, Settle, Maturity, Reset,
Basis, Principal, EndMonthRule)

RateSpec

Spread

Settle

Maturity

Reset

Basis

Structure containing the properties of an interest-rate
structure. See intenvset for information on creating
RateSpec.

Number of basis points over the reference rate.

Settlement date. Settle must be earlier than
Maturity

Maturity date.

(Optional) Frequency of payments per year. Default
=1.

(Optional) Day-count basis of the instrument. A
vector of integers.

® (0 = actual/actual (default)
* 1 =230/360 (SIA)

® 2 = actual/360

® 3 = actual/365

* 4 =230/360 (BMA)

* 5=230/360 (ISDA)

® 6 = 30/360 (European)

® 7 = actual/365 (Japanese)
e 8 = actual/actual ICMA)
® 9 = actual/360 (ICMA)

6-225

floatbyzero

Description

Examples

6-226

® 10 = actual/365 (ICMA)

* 11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
* 13 = BUS/252

Principal (Optional) The notional principal amount. Default
=100.

EndMonthRule (Optional) NINST-by-1 vector representing the
End-of-month rule. Default = 1.

All inputs are either scalars or NINST-by-1 vectors unless otherwise
specified. Any date may be a serial date number or date string. An
optional argument may be passed as an empty matrix [].

Price = floatbyzero(RateSpec, Spread, Settle, Maturity,
Reset, Basis, Principal, EndMonthRule) computes the price of a
floating-rate note from a set of zero curves.

Price is a number of instruments (NINST) by number of curves
(NUMCURVES) matrix of floating-rate note prices. Each column arises
from one of the zero curves.

Price a 20-basis point floating-rate note using a set of zero curves.

Load the file deriv.mat, which provides ZeroRateSpec, the
Iinterest-rate term structure needed to price the note.

load deriv.mat

Set the required values. Other arguments will use defaults.

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

floatbyzero

Use floatbyzero to compute the price of the note.

Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity)

Price

100.5529

See Also bondbyzero, cfbyzero, fixedbyzero, swapbyzero

6-227

floorbybdt

Purpose Price floor instrument from BDT interest-rate tree

Syntax [Price, PriceTree] = floorbybdt(BDTTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

BDTTree Interest-rate tree structure created by bdttree.

Strike Number of instruments (NINST)-by-1 vector of rates
at which the floor is exercised.

Settle Settlement date. NINST-by-1 vector of dates
representing the settlement dates of the floor.
The Settle date for every floor is set to the
ValuationDate of the BDT tree. The floor argument
Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floor.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.
® (0 = actual/actual (default)

1 = 30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

7 = actual/365 (Japanese)

6-228

floorbybdt

Description

Examples

8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

® 10 = actual/365 (ICMA)
11 = 30/360E (ICMA)

e 12 = actual/actual (ISDA)
* 13 = BUS/252

Principal (Optional) The notional principal amount. Default
=100.
Options (Optional) Derivatives pricing options structure

created with derivset.

[Price, PriceTree] = floorbybdt(BDTTree, Strike,
Settlement, Maturity, Reset, Basis, Principal, Options)
computes the price of a floor instrument from a BDT interest-rate tree.

Price is an NINST-by-1 vector of the expected prices of the floor at
time 0.

PriceTree is the tree structure with values of the floor at each node.

Example 1. Price a 10% floor instrument using a BDT interest-rate
tree.

Load the file deriv.mat, which provides BDTTree. BDTTree contains the
time and interest-rate information needed to price the floor instrument.

load deriv.mat;
Set the required values. Other arguments will use defaults.
Strike = 0.10;

Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

6-229

floorbybdt

Use floorbybdt to compute the price of the floor instrument.

Price = floorbybdt (BDTTree, Strike, Settle, Maturity)
Price =
0.1770

Example 2. Here is a second example, showing the pricing of a 10%
floor instrument using a newly created BDT tree.

First set the required arguments for the three needed specifications.

Compounding = 1;

ValuationDate = '01-01-2000"';

StartDate = ValuationDate;

EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003';
'01-01-2004'; '01-01-2005'];

Rates = [.1; .11; .12; .125; .13];

Volatility = [.2; .19; .18; .17; .16];

Next create the specifications.

RateSpec = intenvset('Compounding', Compounding, ...
'ValuationDate', ValuationDate,...

'StartDates', StartDate,...

'EndDates', EndDates,...

'Rates', Rates);

BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

Now create the BDT tree from the specifications.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Set the floor arguments. Remaining arguments will use defaults.

6-230

floorbybdt

FloorStrike = 0.10;
Settlement = ValuationDate;
Maturity = '01-01-2002"';
FloorReset 1;

Finally, use floorbybdt to find the price of the floor instrument.

See Also

Price= floorbybdt(BDTTree, FloorStrike, Settlement, Maturity,...
FloorReset)

Price =

0.0431

bdttree, capbybdt, cfbybdt, swapbybdt

6-231

floorbybk
|

Purpose Price floor instrument from Black-Karasinski interest-rate tree

Syntax [Price, PriceTree] = floorbybk(BKTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

BKTree Interest-rate tree structure created by bktree.

Strike Number of instruments (NINST)-by-1 vector of rates at
which the floor is exercised.

Settle Settlement date. NINST-by-1 vector of dates
representing the settlement dates of the floor. The
Settle date for every floor is set to the ValuationDate
of the BK tree. The floor argument Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floor.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.
® (0 = actual/actual (default)

1 = 30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

7 = actual/365 (Japanese)

6-232

floorbybk

Description

Examples

8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

10 = actual/365 (ICMA)
11 = 30/360E (ICMA)

e 12 = actual/actual (ISDA)
e 13 = BUS/252

Principal (Optional) The notional principal amount. Default
= 100.
Options (Optional) Derivatives pricing options structure

created with derivset.

[Price, PriceTree] = floorbybk(BKTree, Strike, Settlement,
Maturity, Reset, Basis, Principal, Options) computes the price
of a floor instrument from a Black-Karasinski tree.

Price is an NINST-by-1 vector of the expected prices of the floor at
time 0.

PriceTree is the tree structure with values of the floor at each node.

Price a 3% floor instrument using a Black-Karasinski interest-rate tree.

Load the file deriv.mat, which provides BKTree. The BKTree structure
contains the time and interest rate information needed to price the
floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike 0.03;
Settle = '01-Jdan-2005"';
Maturity = '01-Jdan-2009';

6-233

floorbybk

Use floorbyhw to compute the price of the floor instrument.

Price = floorbybk(BKTree, Strike, Settle, Maturity)
Price =
0.2061
See Also bktree, capbybk, cfbybk, swapbybk

6-234

floorbyblk

Purpose

Syntax

Arguments

Price floors using Black option pricing model

[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike, Settle,
Maturity, Volatility)

[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike, Settle,
Maturity, Volatility, 'Namei', Valuel...)

RateSpec

Strike

Settle
Maturity
Volatility

Reset

Principal

Basis

The annualized, continuously compounded rate term
structure. For more information, see intenvset.

NINST-by-1 vector of rates at which the floor is
exercised, as a decimal number.

Scalar representing the settle date of the floor.
Scalar representing the maturity date of the floor.
NINST-by-1 vector of volatilities.

(Optional) NINST-by-1 vector representing the
frequency of payments per year. Default is 1.

(Optional) NINST-by-1 vector representing the
notional principal amount. Default is 100.

NINST-by-1 vector representing the basis used when
annualizing the input forward rate.

® (0 = actual/actual (default)

1 =30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

6-235

floorbyblk

Description

6-236

7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

® 10 = actual/365 (ICMA)
11 = 30/360E (ICMA)

e 12 = actual/actual (ISDA)
* 13 =BUS/252

ValuationDate (Optional) Scalar representing the observation date
of the investment horizons. The default is the Settle
date.

Note All optional inputs are specified as matching parameter
name/value pairs. The parameter name is specified as a character
string, followed by the corresponding parameter value. You can specify
parameter name/value pairs in any order. Names are case-insensitive
and partial string matches are allowed provided no ambiguities exist.

[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike,
Settle, Maturity, Volatility)

[FloorPrice, Floorlets] = floorbyblk(RateSpec, Strike,
Settle, Maturity, Volatility, 'Namet1', Valuel...)

Use floorbyblk to price floors using the Black option pricing model.

The outputs are:

® FloorPrice — NINST-by-1 expected prices of the floor.
® Floorlets — NINST-by-NCF array of floorlets, padded with NaNs.

floorbyblk
|

Examples Consider an investor who gets into a contract that floors the interest
rate on a $100,000 loan at 6% quarterly compounded for 3 months,
starting on January 1, 2009’. Assuming that on January 1, 2008 the
zero rate 1s 6.9394% continuously compounded and the volatility 1s 20%,
use this data to compute the floor price.

Calculate the RateSpec:

ValuationDate = 'Jan-01-2008"';
EndDates ='April-01-2010"';
Rates = 0.069394;

Compounding = -1;

Basis = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,
‘StartDates', ValuationDate, 'EndDates', EndDates,
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Compute the price of the cap:

Settle = 'Jan-01-2009'; % floor starts in a year
Maturity = 'April-01-2009';

Volatility = 0.20;

FloorRate = 0.06;

FloorReset = 4;

Principal=100000;

FloorPrice = floorbyblk(RateSpec, FloorRate, Settle, Maturity, Volatility,...
'Reset',FloorReset, 'ValuationDate',ValuationDate, 'Principal', Principal,...
'Basis', Basis)

FloorPrice =

37.4864

See Also capbyblk

6-237

floorbyhjm
|

Purpose Price floor instrument from HJM interest-rate tree

Syntax [Price, PriceTree] = floorbyhjm(HJMTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

Arguments

HJMTree Forward-rate tree structure created by hjmtree.

Strike Number of instruments (NINST)-by-1 vector of rates
at which the floor is exercised.

Settle Settlement date. NINST-by-1 vector of dates
representing the settlement dates of the floor.
The Settle date for every floor is set to the
ValuationDate of the HJM tree. The floor argument
Settle is ignored.

Maturity NINST-by-1 vector of dates representing the maturity
dates of the floor.

Reset (Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

Basis (Optional) Day-count basis of the instrument. A
vector of integers.
® (0 = actual/actual (default)

1 = 30/360 (SIA)

® 2 = actual/360

® 3 = actual/365

* 4 =230/360 (BMA)

* 5=230/360 (ISDA)

® 6 = 30/360 (European)

® 7 = actual/365 (Japanese)

6-238

floorbyhjm

Description

Examples

8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

® 10 = actual/365 (ICMA)
11 = 30/360E (ICMA)

e 12 = actual/actual (ISDA)
* 13 = BUS/252

Principal (Optional) The notional principal amount. Default
=100.
Options (Optional) Derivatives pricing options structure

created with derivset.

[Price, PriceTree] = floorbyhjm(HJMTree, Strike,
Settlement, Maturity, Reset, Basis, Principal, Options)
computes the price of a floor instrument from an HJM tree.

Price is an NINST-by-1 vector of the expected prices of the floor at
time 0.

PriceTree is the tree structure with values of the floor at each node.

Price a 3% floor instrument using an HJM forward-rate tree.

Load the file deriv.mat, which provides HUMTree. The HUMTree
structure contains the time and forward-rate information needed to
price the floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.083;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

6-239

floorbyhjm

Use floorbyhjm to compute the price of the floor instrument.

Price = floorbyhjm(HJMTree, Strike, Settle, Maturity)
Price =
0.0486
See Also capbyhjm, cfbyhjm, hjmtree, swapbyhjm

6-240

floorbyhw

Purpose

Syntax

Arguments

Price floor instrument from Hull-White interest-rate tree

[Price, PriceTree] = floorbyhw(HWTree, Strike, Settle, Maturity,
Reset, Basis, Principal, Options)

HWTree
Strike

Settle

Maturity

Reset

Basis

Interest-rate tree structure created by hwtree.

Number of instruments (NINST)-by-1 vector of rates
at which the floor is exercised.

Settlement date. NINST-by-1 vector of dates
representing the settlement dates of the floor.

The Settle date for every floor is set to the
ValuationDate of the HW tree. The floor argument
Settle is ignored.

NINST-by-1 vector of dates representing the maturity
dates of the floor.

(Optional) NINST-by-1 vector representing the
frequency of payments per year. Default = 1.

(Optional) Day-count basis of the instrument. A
vector of integers.

® (0 = actual/actual (default)

1 = 30/360 (SIA)

2 = actual/360

3 = actual/365

4 = 30/360 (BMA)

5 = 30/360 (ISDA)

6 = 30/360 (European)

7 = actual/365 (Japanese)

6-241

floorbyhw

Description

Examples

6-242

8 = actual/actual (ICMA)
9 = actual/360 (ICMA)

® 10 = actual/365 (ICMA)
11 = 30/360E (ICMA)

® 12 = actual/actual (ISDA)
e 13 = BUS/252

Principal (Optional) The notional principal amount. Default
=100.
Options (Optional) Derivatives pricing options structure

created with derivset.

[Price, PriceTree] = floorbyhw(HWTree, Strike, Settlement,
Maturity, Reset, Basis, Principal, Options) computes the price
of a floor instrument from an HW tree.

Price is an NINST-by-1 vector of the expected prices of the floor at
time 0.

PriceTree is the tree structure with values of the floor at each node.

Price a 3% floor instrument using a Hull-White interest-rate tree.

Load the file deriv.mat, which provides HWNTree. The HWTree structure
contains the time and interest rate information needed to price the
floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike 0.083;
Settle = '01-Jdan-2005"';
Maturity = '01-Jan-2009';

floorbyhw
|

Use floorbyhw to compute the price of the floor instrument.

Price = floorbyhw(HWTree, Strike, Settle, Maturity)
Price =
0.4616
See Also capbyhw, cfbyhw, hwtree, swapbyhw

6-243

gapbybls

Purpose Calculate price of gap digital options using Black-Scholes model

Syntax Price = gapbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike, StrikeThreshold)

Arguments

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.

Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.

Strike NINST-by-1 vector of payoff strike price values.

StrikeThreshold NINST-by-1 vector of strike values that determine
if the option pays off.

Description Price = gapbybls(RateSpec, StockSpec, Settle, Maturity,
OptSpec, Strike, StrikeThreshold) computes gap option prices
using the Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.
Examples Consider a gap call and put options on a nondividend paying stock with

a strike of 57 and expiring on January 1, 2008. On July 1, 2008 the stock
is trading at 50. Using this data, compute the price of the option if the
risk-free rate is 9%, the strike threshold is 50, and the volatility is 20%.

Create the RateSpec:

Settle = 'Jan-1-2008"';
Maturity = 'Jul-1-2008';

6-244

gapbybls

Compounding = -1;

Rates = 0.09;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', 1);

Define the StockSpec:
AssetPrice = 50;

Sigma = .2;
StockSpec = stockspec(Sigma, AssetPrice);

Define the call and put options:
OptSpec = {'call'; 'put'};

Strike = 57;
StrikeThreshold = 50;

Calculate the price:

Pgap = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, StrikeThreshold)

Pgap =

-0.0053
4.4866

See Also assetbybls, cashbybls, gapsensbybls, supersharebybls

6-245

gapsensbybls

Purpose Calculate price and sensitivities of gap digital options using
Black-Scholes model

Syntax PriceSens = gapsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, StrikeThreshold)
PriceSens = gapsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, StrikeThreshold, OutSpec)

Arguments

RateSpec The annualized, continuously compounded rate
term structure. For information on the interest
rate specification, see intenvset.

StockSpec Stock specification. See stockspec.

Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.

OptSpec NINST-by-1 cell array of strings 'call' or 'put'.
Strike NINST-by-1 vector of strike price values.

StrikeThreshold NINST-by-1 vector of strike values that determine
if the option pays off.

OutSpec (Optional) All optional inputs are specified as
matching parameter name/value pairs. The
parameter name is specified as a character string,
followed by the corresponding parameter value.
You can specify parameter name/value pairs may
in any order. Names are case-insensitive and
partial string matches are allowed provided no
ambiguities exist. Valid parameter names are:

® NOUT-by-1 or 1-by-NOUT cell array of strings

indicating the nature and order of the outputs
for the function. Possible values are 'Price’,

6-246

gapsensbybls

Description

Examples

'Delta’, 'Gamma', 'Vega', 'Lambda’, 'Rho’,
'Theta', or 'All".

For example, OutSpec = {'Price'; 'Lamba';
'Rho'} specifies that the output should be
Price, Lambda, and Rho, in that order.

To invoke from a function: [Price, Lambda,
Rho] = gapsensbybls(..., 'OutSpec',
{'Price', 'Lamba', 'Rho'})

OutSpec = {'All'} specifies that the output
should be Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the
same as specifying OutSpec as OutSpec =
{'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

® Default is OutSpec = {'Price'}.

PriceSens = gapsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, StrikeThreshold) computes gap
option prices using the Black-Scholes option pricing model.

PriceSens = gapsensbybls(RateSpec, StockSpec, Settle,
Maturity, OptSpec, Strike, StrikeThreshold, OutSpec) includes
an OutSpec argument defined as parameter/value pairs, and computes
gap option prices and sensitivities using the Black-Scholes option
pricing model.

PriceSens is a NINST-by-1 vector of expected option prices and
sensitivities.

Consider a gap call and put options on a nondividend paying stock with
a strike of 57 and expiring on January 1, 2008. On July 1, 2008 the
stock is trading at 50. Using this data, compute the price and sensitivity
of the option if the risk-free rate is 9%, the strike threshold is 50, and
the volatility is 20%.

6-247

gapsensbybls
|

Create the RateSpec:

Settle = 'Jan-1-2008"';

Maturity = 'Jul-1-2008';

Compounding = -1;

Rates = 0.09;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', 1);

Define the StockSpec:
AssetPrice = 50;

Sigma = .2;
StockSpec = stockspec(Sigma, AssetPrice);

Define the call and put options:
OptSpec = {'call'; 'put'};

Strike = 57;
StrikeThreshold = 50;

Calculate the price:

Pgap = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, StrikeThreshold)

Pgap =

-0.0053
4.4866

Compute the gamma and delta:

OutSpec = {'gamma'; 'delta'};
[Gamma ,Delta] = gapsensbybls(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, StrikeThreshold, 'OutSpec', OutSpec)

Gamma =

6-248

gapsensbybls

0.0724
0.0724

Delta =

0.2852
-0.7148

See Also gapbybls

6-249

hedgeopt

Purpose Allocate optimal hedge for target costs or sensitivities

Syntax [PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities,
Price, CurrentHolds, FixedInd, NumCosts, TargetCost,
TargetSens, ConSet)

Arguments

Sensitivities

Price
CurrentHolds

FixedInd

NumCosts

6-250

Number of instruments (NINST) by number of
sensitivities (NSENS) matrix of dollar sensitivities
of each instrument. Each row represents a
different instrument. Each column represents

a different sensitivity.

NINST-by-1 vector of portfolio instrument unit
prices.

NINST-by-1 vector of contracts allocated to each
instrument.

(Optional) Number of fixed instruments
(NFIXED)-by-1 vector of indices of instruments

to hold fixed. For example, to hold the first and
third instruments of a 10 instrument portfolio
unchanged, set FixedInd = [1 3]. Default =11,
no instruments held fixed.

(Optional) Number of points generated along
the cost frontier when a vector of target costs
(TargetCost) is not specified. The default is
10 equally spaced points between the point
of minimum cost and the point of minimum
exposure. When specifying TargetCost, enter
NumCosts as an empty matrix [].

hedgeopt

TargetCost

TargetSens

ConSet

(Optional) Vector of target cost values along the
cost frontier. If TargetCost is empty, or not
entered, hedgeopt evaluates NumCosts equally
spaced target costs between the minimum cost
and minimum exposure. When specified, the
elements of TargetCost should be positive
numbers that represent the maximum amount of
money the owner is willing to spend to rebalance
the portfolio.

(Optional) 1-by-NSENS vector containing the
target sensitivity values of the portfolio. When
specifying TargetSens, enter NumCosts and
TargetCost as empty matrices [].

(Optional) Number of constraints (NCONS)

by number of instruments (NINST) matrix

of additional conditions on the portfolio
reallocations. An eligible NINST-by-1 vector of
contract holdings, PortWts, satisfies all the
inequalities A*PortWts <= b, where

A = ConSet(:,1:end-1) and b =
ConSet(:,end).

6-251

hedgeopt

Description

6-252

Notes

The user-specified constraints included in ConSet may be created with
the functions pcalims or portcons. However, the portcons default
PortHolds positivity constraints are typically inappropriate for hedging
problems since short-selling is usually required.

NPOINTS, the number of rows in PortSens and PortHolds and the
length of PortCost, is inferred from the inputs. When the target
sensitivities, TargetSens, is entered, NPOINTS = 1; otherwise NPOINTS
= NumCosts, or is equal to the length of the TargetCost vector.

Not all problems are solvable (for example, the solution space may be
infeasible or unbounded, or the solution may fail to converge). When
a valid solution is not found, the corresponding rows of PortSens and
PortHolds and the elements of PortCost are padded with NaNs as
placeholders.

[PortSens, PortCost, PortHolds] = hedgeopt(Sensitivities,
Price, CurrentHolds, FixedInd, NumCosts, TargetCost,
TargetSens, ConSet) allocates an optimal hedge by one of two criteria:

e Minimize portfolio sensitivities (exposure) for a given set of target
costs.

e Minimize the cost of hedging a portfolio given a set of target
sensitivities.

Hedging involves the fundamental tradeoff between portfolio insurance
and the cost of insurance coverage. This function lets investors modify
portfolio allocations among instruments to achieve either of the criteria.
The chosen criterion is inferred from the input argument list. The
problem is cast as a constrained linear least-squares problem.

PortSens is a number of points (NPOINTS)-by-NSENS matrix of
portfolio sensitivities. When a perfect hedge exists, PortSens is zeros.
Otherwise, the best hedge possible is chosen.

hedgeopt
|

PortCost is a 1-by-NPOINTS vector of total portfolio costs.
PortHolds is an NPOINTS-by-NINST matrix of contracts allocated to each
instrument. These are the reallocated portfolios.
See Also hedgeslf
pcalims, portcons, portopt in Financial Toolbox documentation

1sglin in Optimization Toolbox documentation

6-253

hedgeslf

Purpose

Syntax

Arguments

6-254

Self-financing hedge

[PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities,
Price, CurrentHolds, FixedInd, ConSet)

Sensitivities

Price

CurrentHolds

FixedInd

ConSet

Number of instruments (NINST) by number of
sensitivities (NSENS) matrix of dollar sensitivities
of each instrument. Each row represents a
different instrument. Each column represents

a different sensitivity.

NINST-by-1 vector of instrument unit prices.

NINST-by-1 vector of contracts allocated in each
instrument.

(Optional) Empty or number of fixed instruments
(NFIXED)-by-1 vector of indices of instruments

to hold fixed. The default is FixedInd = 1; the
holdings in the first instrument are held fixed. If
NFIXED instruments will not be changed, enter all
their locations in the portfolio in a vector. If no
instruments are to be held fixed, enter FixedInd

=[]

(Optional) Number of constraints
(NCONS)-by-NINST matrix of additional
conditions on the portfolio reallocations. An
eligible NINST-by-1 vector of contract holdings,
PortHolds, satisfies all the inequalities
A*PortHolds <= b, where

A = ConSet(:,1:end-1) and b =
ConSet(:,end).

hedgeslf

Description

Examples

[PortSens, PortValue, PortHolds] = hedgeslf(Sensitivities,
Price, CurrentHolds, FixedInd, ConSet) allocates a self-financing
hedge among a collection of instruments. hedgeslf finds the reallocation
in a portfolio of financial instruments that hedges the portfolio against
market moves and that is closest to being self-financing (maintaining
constant portfolio value). By default the first instrument entered is
hedged with the other instruments.

PortSens is a 1-by-NSENS vector of portfolio dollar sensitivities. When
a perfect hedge exists, PortSens is zeros. Otherwise, the best possible
hedge is chosen.

PortValue is the total portfolio value (scalar). When a perfectly
self-financing hedge exists, PortValue is equal to dot (Price,
CurrentWts) of the initial portfolio.

PortHolds is an NINST-by-1 vector of contracts allocated to each
instrument. This is the reallocated portfolio.

Notes

1. The constraints PortHolds (FixedInd) = CurrentHolds(FixedInd)
are appended to any constraints passed in ConSet. Pass FixedInd =

[1 to specify all constraints through ConSet.

2. The default constraints generated by portcons are inappropriate,
since they require the sum of all holdings to be positive and equal to one.

3. hedgeself first tries to find the allocations of the portfolio that
make it closest to being self-financing, while reducing the sensitivities
to 0. If no solution is found, it finds the allocations that minimize the
sensitivities. If the resulting portfolio is self-financing, PortValue is
equal to the value of the original portfolio.

Example 1. Perfect sensitivity cannot be reached.

Sens = [0.44 0.32; 1.0 0.0];

6-255

hedgeslf

Price = [1.2; 1.0];
Wo = [1; 1];

[PortSens, PortValue, PortHolds]= hedgeslf(Sens,

PortSens =

0.0000
0.3200

PortvValue =
0.7600
PortHolds =

1.0000
-0.4400

Example 2. Constraints are in conflict.
Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];

wo = [1; 1];
ConSet = pcalims([2 2])

% 0.K. if nothing fixed.

[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, WO,..

[1, ConSet)

PortSens =

2.8800
0.6400

PortvValue =

6-256

Price, WO)

hedgeslf
|

4.4000

PortHolds =

% WO(1) is not greater than 2.

[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, WO,...
1, ConSet)

??? Error using ==> hedgeslf
Overly restrictive allocation constraints implied by ConSet and
by fixing the weight of instruments(s): 1

Example 3. Constraints are impossible to meet.

Sens = [0.44 0.32; 1.0 0.0];
Price = [1.2; 1.0];

Wo = [15 11;

conSet = pcalims([2 2],[1 1]);

[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, WO,...
[1,ConSet)

??? Error using ==> hedgeslf
Overly restrictive allocation constraints specified in ConSet

See Also hedgeopt

1sqglin in Optimization Toolbox documentation

portcons in Financial Toolbox documentation

6-257

hjmprice

Purpose
Syntax

Arguments

Description

6-258

Instrument prices from HJM interest-rate tree

Price = hjmprice(HJMTree, InstSet, Options)

HJMTree Heath-Jarrow-Morton tree sampling a forward-rate
process. See hjmtree for information on creating
HJMTree.

InstSet Variable containing a collection of instruments.

Instruments are categorized by type. Each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

Price = hjmprice(HJMTree, InstSet, Options) computes
arbitrage-free prices for instruments using an interest-rate tree
created with hjmtree. A subset of NINST instruments from a financial
instrument variable, InstSet, are priced.

Price is a NINST-by-1 vector of prices for each instrument. The prices
are computed by backward dynamic programming on the interest-rate
tree. If an instrument cannot be priced, NaN is returned.

PriceTree is a MATLAB structure of trees containing vectors of
instrument prices and accrued interest, and a vector of observation
times for each node.

PriceTree.PBush contains the clean prices.
PriceTree.AIBush contains the accrued interest.

PriceTree.tObs contains the observation times.

hjmprice

Examples

hjmprice handles instrument types: 'Bond', 'CashFlow', 'OptBond’,
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd
to construct defined types.

Related single-type pricing functions are:

® pondbyhjm: Price a bond from an HJM tree.

® capbyhjm: Price a cap from an HJM tree.

e cfbyhjm: Price an arbitrary set of cash flows from an HJM tree.

e fixedbyhjm: Price a fixed-rate note from an HJM tree.

e floatbyhjm: Price a floating-rate note from an HJM tree.

e floorbyhjm: Price a floor from an HJM tree.

e optbndbyhjm: Price a bond option from an HJM tree.

e optembndbyhjm: Price a bond with embedded option by an HJM tree.
® swapbyhjm: Price a swap from an HJM tree.

® swaptionbyhjm: Price a swaption from an HJM tree.

Load the HJM tree and instruments from the data file deriv.mat. Price
the cap and bond instruments contained in the instrument set.

load deriv.mat;

HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'});

instdisp (HJMSubSet)

Index Type CouponRate Settle Maturity Period Basis ... Name Quantity
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN ... 4% bond 100

2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN ... 4% bond 50
Index Type Strike Settle Maturity CapReset Basis ... Name Quantity

3 Cap 0.03 01-Jan-2000 01-Jan-2004 1 NaN e 3% Cap 30

[Price, PriceTree] = hjmprice(HJMTree, HJMSubSet)

6-259

hjmprice

Warning: Not all cash flows are aligned with the tree. Result will

be approximated.
Price =

98.7159
97.5280
6.2831

PriceTree =

FinObj: 'HJMPriceTree'
PBush: {[3x1 double] [3x1x2 double] [3x2x2 double] [3x4x2 double] [3x8 double]}
AIBush: {[3x1 double] [3x1x2 double] [3x2x2 double] [3x4x2 double] [3x8 double]}
tObs: [0 1 2 3 4]

You can use treeviewer to see the prices of these three instruments
along the price tree.

treeviewer (PriceTree, HJMSubSet)

6-260

hjmprice

Si-TE ST
O R Yow fowt Jook Yrdow e O O Yo fewt Jook edow b
lnchon asisaton Sbction Vimsksaton
= Pah T Table = P o Tatle
" Viode st Chcin 1 Dagam 1 Mode and Chidien A Dragan
= ol e Ll
o 1 2 3 4 T — o 1 2 3 4 - o
First 4% Bond (Maturity 2003) Second 4% Bond (Maturity 2004)
=10lx
Be G& Yew juwert Took Wedow Heb
= -e—c L T
[] 1 2 3 4 e —
3% Cap
See Also hjmsens, hjmtree, hjmvolspec, instadd, intenvprice, intenvsens

6-261

hjmsens

Purpose

Syntax

Arguments

Description

6-262

Instrument prices and sensitivities from HJM interest-rate tree

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet,
Options)

HJMTree Heath-Jarrow-Morton tree sampling a forward-rate
process. See hjmtree for information on creating
HJMTree.

InstSet Variable containing a collection of instruments.

Instruments are categorized by type. Each type can
have different data fields. The stored data field is a
row vector or string for each instrument.

Options (Optional) Derivatives pricing options structure
created with derivset.

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, InstSet,
Options) computes instrument sensitivities and prices for instruments
using an interest-rate tree created with hjmtree. NINST instruments
from a financial instrument variable, InstSet, are priced. hjmsens
handles instrument types: 'Bond', 'CashFlow', 'OptBond’,
'OptEmBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap'. See instadd
for information on instrument types.

Delta is an NINST-by-1 vector of deltas, representing the rate of change
of instrument prices with respect to changes in the interest rate. Delta
is computed by finite differences in calls to hjmtree. See hjmtree for
information on the observed yield curve.

Gamma is an NINST-by-1 vector of gammas, representing the rate of
change of instrument deltas with respect to the changes in the interest
rate. Gamma is computed by finite differences in calls to hjmtree.

Vega is an NINST-by-1 vector of vegas, representing the rate of change
of instrument prices with respect to the changes in the volatility

hjmsens

Examples

o(t,T). Vega is computed by finite differences in calls to hjmtree. See
hjmvolspec for information on the volatility process.

Note All sensitivities are returned as dollar sensitivities. To find the
per-dollar sensitivities, divide by the respective instrument price.

Price is an NINST-by-1 vector of prices of each instrument. The prices
are computed by backward dynamic programming on the interest-rate
tree. If an instrument cannot be priced, NaN is returned.

Delta and Gamma are calculated based on yield shifts of 100 basis points.

Vega is calculated based on a 1% shift in the volatility process.

Load the tree and instruments from a data file. Compute Delta and

Gamma for the cap and bond instruments contained in the instrument set.

load deriv.mat;
HJMSubSet = instselect(HJMInstSet, 'Type', {'Bond', 'Cap'});
instdisp (HJMSubSet)

Index Type CouponRate Settle Maturity Period Name

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 4% bond
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 4% bond
Index Type Strike Settle Maturity CapReset... Name ...
3 Cap 0.03 01-Jan-2000 01-Jan-2004 1 3% Cap

[Delta, Gamma] = hjmsens(HJMTree, HJMSubSet)

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Delta =

6-263

hjmsens

-272.6462
-347.4315
294.9700
Gamma =
1.0e+003 *
1.0299

1.6227
6.8526

See Also hjmprice, hjmtree, hjmvolspec, instadd

6-264

hjmtimespec

Purpose Specify time structure for HJM interest-rate tree
Syntax TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)
Arguments

ValuationDate Scalar date marking the pricing date and first

Maturity

Compounding

observation in the tree. Specify as serial date
number or date string.

Number of levels (depth) of the tree. A number of
levels (NLEVELS)-by-1 vector of dates marking the
cash flow dates of the tree. Cash flows with these
maturities fall on tree nodes. Maturity should
be in increasing order.

(Optional) Scalar value representing the rate
at which the input zero rates were compounded
when annualized. Default = 1. This argument
determines the formula for the discount factors:
Compounding =1, 2, 3, 4, 6, 12

Disc = (1 + Z/F)"(-T), where F is the
compounding frequency, Z is the zero rate, and
T is the time in periodic units; for example, T =
F is 1 year.

Compounding = 365

Disc = (1 + Z/F)~(-T), where F is the number
of days in the basis year and T is a number of
days elapsed computed by basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.

6-265

hjmtimespec

Description

Examples

See Also

6-266

TimeSpec = hjmtimespec(ValuationDate, Maturity,
Compounding) sets the number of levels and node times for an HJIM
tree and determines the mapping between dates and time for rate
quoting.

TimeSpec is a structure specifying the time layout for hjmtree. The
state observation dates are [Settle; Maturity(1:end-1)]. Because a
forward rate is stored at the last observation, the tree can value cash
flows out to Maturity.

Specify an eight-period tree with semiannual nodes (every six months).
Use exponential compounding to report rates.

Compounding = -1;

ValuationDate = '15-Jan-1999';

Maturity = datemnth(ValuationDate, 6*(1:8)"');

TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

TimeSpec

FinObj: 'HJMTimeSpec'
ValuationDate: 730135
Maturity: [8x1 double]
Compounding: -1
Basis: 0
EndMonthRule: 1

hjmtree, hjmvolspec

hjmtree

Purpose
Syntax

Arguments

Description

Examples

Construct HJM interest-rate tree

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

VolSpec Volatility process specification. Sets the number of

factors and the rules for computing the volatility

o (¢,T) for each factor. See hjmvolspec for information
on the volatility process.

RateSpec Interest-rate specification for the initial rate curve. See
intenvset for information on declaring an interest-rate

variable.

TimeSpec Tree time layout specification. Defines the observation
dates of the HJM tree and the compounding rule for
date to time mapping and price-yield formulas. See

hjmtimespec for information on the tree structure.

HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec) creates a

structure containing time and forward-rate information on a bushy tree.

Using the data provided, create an HJM volatility specification
(VolSpec), rate specification (RateSpec), and tree time layout
specification (TimeSpec). Then use these specifications to create an
HJM tree using hjmtree.

Compounding = 1;

ValuationDate = '01-01-2000"';

StartDate = ['01-01-2000'; '01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'];
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];

Volatility = [.2; .19; .18; .17; .16];

CurveTerm = [1; 2; 3; 4; 5];

6-267

hjmtree

HJMVolSpec = hjmvolspec('Stationary', Volatility , CurveTerm);

RateSpec = intenvset('Compounding', Compounding,...
'ValuationDate', ValuationDate,...
'StartDates', StartDate,...

'EndDates', EndDates,...

'Rates', Rates);

HJMTimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);

HJIMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)

Use treeviewer to observe the tree you have created.

treeviewer (HJMTree)
<) Tree Yiewer 10l =|
File Edit Yiew Insert Tools Window Help
r Tree Visualization
; ; ; ; ; Selection Wisualization
&+ Path Table
" MNode and Children ' Diagram
" Plat

Help Cloze

See Also hjmprice, hjmtimespec, hjmvolspec, intenvset

6-268

hjmvolspec

Purpose
Syntax

Arguments

Specify HJM interest-rate volatility process
Volspec = hjmvolspec(varargin)

The arguments to hjmvolspec vary according to the type and number
of volatility factors specified when calling the function. Factors

are specified by pairs of names and parameter sets. Factor names
can be 'Constant', 'Stationary', 'Exponential', 'Vasicek', or
'Proportional'. The parameter set is specific for each of these factor

types:

® Constant volatility (Ho-Lee):
VolSpec = hjmvolspec('Constant', Sigma_0)

® Stationary volatility:
VolSpec = hjmvolspec('Stationary', CurveVol, CurveTerm)

¢ Exponential v